
AO-AO82 gas lIT RESEARCH INST CHICAGO IL F/6 9/2
A REVIEW OF SOFTWARE MAINTENANCE TECHNOLOGY.(U)

FES So J 0 DONAHOO, D Rt SWEARINGEN F30602-78-C-0255
UNCLASSIFIFO RAOC -TR-80-13 N

IIIIIIIII

.3 'LEVEI
I RADC-TR40-13

Interim Report
Peruary 1980

SA REVIEW OF SOFTWARE
X MAINTENANCE TECHNOLOGY

W : ITT Research Institute,
0

OC John D. Donahoo
] Dorothy Swearingen

rAPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNUMITED

I

ROME AIR DEVELOPMENT CENTER
rJ Air Force Systems Command,

Z Griffiss Air Force Base, New York 13441
C-:)

~L_-

This report has been reviewed by the RADC Public Affairs Office (PA)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

RADC-TR-80-13 has been reviewed and is approved for publication.
F

APPROVED:

JOHN PALAIMO
Proj ec t Engineer

APPROVED: $'"t4k1O~.
WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: "

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organiza-
tion, please notify RADC (ISIS), Griffiss AFB NY 13441. This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED
SECURIV ASSIFICATION OF THIS PAGE (Wo. Data Ent...d)

SREPORT DOcuMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I C'y 2. GOVT ACCESSION No. 3 RECIPIENT'S CATALOG NUMBER

T- - Fr"OO COVERAED
A REVIEW OF SOFTWARE MAINTENANCE TECHNOLOGY. Inter i epet

-~g -- Mar i - Nov amw 7 9

N/A

Q John D.-Donahoo -- /

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT, PROJECT, TASK

lIT Research Institute/ AREA WORK U _&

10 West 3rd Street 563728FA.

Chicago IL 60616 28 M

I. CONTROLLING OFFICE NAME AND ADDRESS 001_ '

Rome Air Development Center (ISIS) (Fel no 18
Griffiss AFB NY 13441 0/ -, "

221

14 MONITORING AGENCY NAME A ADDRESS0ff dilfferenlt 1ro Controlling Of ce) 1S. SECURITY CLASS. (of thil reP'rtr
Same

UNCLASSIFIED

IS. DECLASSIFICATION DOWNGRADING/ASCHE-DULE

16 DISTRIBUTION STATEMENT (of ba

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

Same

18 SUPPLEMENTARY NOTES

RADC Project Engineer: John Palaimo (ISIS)

This work was performed under a subcontract by Computer Sciences Corporation,
6022 Technology Drive, Huntsville, AL 35807.

19 KEY WORDS (Continue on reverse side I necessary and Identify by block number)

Software Maintenance Software Failures
Software Maintenance Tools Software Testing
Software Maintenance Techniques Software Modification
Software Life Cycle Management

Software Verification and Validation
ABSTRACT (Contlnue on reverse side if nece.rv end identify by block number

The purpose of this effort was to develop a comprehensive statement about soft-
ware maintenance techniques and tools in use today. This report focuses on soft,
ware maintenance technology as it is described and defined in open literature
and technical reports. Material was selected based on its relevance to the
subject of software maintenance and date it was published. Generally, only
papers and articles published since 1974 and reports and books published since
1975 were selected

DD 1JA,m 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE t'enei Fn.ere,

-9'- '4.-

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Whon Dae gmomtd)

UNCLASSIFIED

SSCURITY CLASSIFICATION OF THIS PAGErUbItn Date RnteroE)

FOREWORD

This technical report presents the results of a review

of open litbrature and technical reports concerning the develop-

ment and use of computer software maintenance techniques and

tools. This effort was sponsored by the Information Sciences

Division of the Rome Air Development Center (RADC) under contract

number F30602-78-C-0255. J. Palaimo of RADC was the Project Engi-

neer. Review research activities were managed by the RADC Data

and Analysis Center for Software (DACS) in conjunction with

its software engineering research program.

Approved by Sub bmttd by

Lorraine Duvall Joh D. Donahoo
DACS Program Manager Computer Sciences Corporation
IIT Research Institute

Computer Sciences Corporation

xccessi~l For

D'DC 7J
j.AI e

I"--~~ ~~ ' A ~.[, or

DiiS

EXECUTIVE SUMMARY

At the present time computer software maintenance is re-

ceiving a great deal of attention; from data processing managers

who see more and more of their resources committed to the'support

of operational software, from programmers and analysts who find

themselves responsible for increasing volumes of program code,

and from users who demand improved performance, expanded capa-

bilities, and new products from existing systems. As an out-

growth of that attention the published literature is filled with

reports and discussions of software maintenance related topics.

There are new maintenance support systems, both automated and

manual and expanded applications for the established technology.

New software maintenance concepts and approaches are being pre-

sented. This report offers some insight into the wealth of infor-

mation on these topics that exists in current articles, papers,
reports,'k and books. No attempt has been made to evaluate the

techniques and tools described in this report. They are presented

through the medium of summary descriptions in a common format

and they are correlated with maintenance activities using a cor-

relation matrix. The set of techniques and tools described in

this report is by no means complete. However, it is represen-
tative of software maintenance technology as it exists today.

These techniques and tools have been selected because they are

typical of applied concepts and approaches, and because they

have been adequately documented or described in open literature.

A significant deficiency that exists in all the literature

reviewed for this report is a lack of definitive information

about technology performance in a maintenance environment. How

well do these techniques and tools support maintenance of opera-

tional software systems? The technology is usually described

statically in terms of attributes and processes. If application

is discussed the information is typically general in nature with

no specific reference to performance or effectiveness. This

one aspect of software maintenance technology literature appears

to be worthy of more attention and research.

V

H=LMNGp~m &A

CONTENTS

Section Page

I INTRODUCTION 1-1

1.1 Review Background/Purpose 1-1
1.2 Review Scope 1-3
1.3 Report Content 1-4

II SOFTWARE MAINTENANCE OVERVIEW 2-1

2.1 Life Cycle Maintenance 2-1
2.2 Maintenance Engineering 2-8
2.3 Administering Maintenance 2-10
2.4 Maintainable Software 2-17

III SOFTWARE MAINTENANCE TECHNOLOGY 3-1

3.1 Maintenance Functions 3-1
3.2 Maintenance Activities 3-2
3.3 Technology/Activity Matrix 3-4

IV MAINTENANCE TOOLS AND TECHNIQUES 4-1

4.1 Tools/Techniques Applications
Matrix 4-1

4.2 Tool/Techniques Descriptions 4-11

V TECHNOLOGY REVIEW ASSESSMENT 5-1

5.1 Maintenance State-of-the-Art 5-1
5.2 Maintenance Research Directions 5-8

VI REFERENCES 6-1

VII BIBLIOGRAPHY 7-1

APPENDIX - GLOSSARY A-1

PHZXD1LW pLA No-r niIAV,!

vii

LIST OF ILLUSTRATIONS

Figure Page

3-1 Functions - Activities Hierarchy.................3-3

3-2 Maintenance Technology/Activity Correlation
Matrix.. 3-5

4-1 Maintenance Tools & Techniques Applications
Matrix.. 4-3

LIST OF TABLES

Table Page

2-1 Summary - Bases of Software Maintenance 2-7

2-2 Software Maintenance/Modification Required

Capabilities.................................... 2-9

Viii

SECTION I

INTRODUCT ION

1.1 REVIEW BACKGROUND/PURPOSE

The data processing community is now experiencing the effects

of being associated with a maturing industry. The effects are

more pronounced for the hardware segment of the industry and have

been examined and reported in some detail. Identification and

definition of these effects for the software segment is relatively

tentative now, but an awareness of their presence is reflected in

experiences and concerns described in many of the papers, reports,

and articles reviewed in preparing this report. These experiences

and concerns are conveyed through discussion of such diverse sub-

Jects as life cycle management and technological challenge, data

processing terminology, software maintenance management and tech-

nology, computer program development, and others. In these docu-

ments the writers quite often cite the lack of a structured and

universally applicable discipline for implementing and managing

software across its life cycle, as a significant impediment to

achieving full potential of that software. Their statements

reflect a growing frustration with the fundamental problems

facing the entire data processing industry today. Orne of those

problems involves an ever increasing body of expensive and com-

plex operational software that must be maintained in a viable

state.

This report focuses on software maintenance technology as

it is described and defined in open literature and technical

reports. No attempt has been made to define a software manage-

mernt or maintenance discipline. That would have been far beyond

the scope of this project. The purpose in conducting the tech-

nology review was to develop a comprehensive statement about

the maintenance techniques and tools in use today and to describe

how they support the activities associated with computer software

maintenance. The computer program maintenance environment was

also examined and is described through discussion of topics re-

lated to implementation of software maintenance technology. It

is hoped that this report might foster further research into

software maintenance principles and ultimately lead to definition

of a software engineering discipline encompassing all aspects of

computer program development and maintenance.

One realization that comes early to anyone reviewing the

literature of data processing is that the terminology is not con-

sistent. It is, no doubt, simply another symptom of the rapid

development and ciianges that are occuring in this industry. The

language of data processing has not been given an opportunity to
"catch its breath" as the technology continues its accelerating

advances. For that reason, each writer must carefully define the

key terms and phrases which he uses in developing his technical

presentation. During the review of literature and reports for

this report certain terms and phrases were common to the discus-

sions of maintenance technology. In most cases definitions were

given or meanings were obvious from the context. The most prom-

inent of those terms and phrases are shown below, along with brief

discussions of their usage and the definitions applied for this

report. A complete glossary of terms to be found in this report

are presented in Appendix A.

0 Software (Computer Program) Maintenance. Some writers
have expressed reservations about using the term main-
tenance with respect to computer programs. Among the
reasons given is the concept that programs don't fail
the way hardware fails (References 1 and 2). That
is, software "parts" don't deteriorate or break, but
functional failures occur'because of existing states
of the programs. Therefore, maintaining software is
really only a changing or modifying process. Also
the point is made that the term " maintenance" has a
less than desirable connotation for most programmers
(Reference 3). Maintaining computer programs is con-
sidered to be work at a lower skill level than program
development and is thus to be avoided. However, the
word maintenance seems to be too firmly entrenched in
the literature on this subject to be replaced now.
For this report a definition of software maintenance
was followed which is consistent with that presented

1-2

by Boehm in his paper, Software Engineering (Refer-
ence 4). That is, "the process of modifying existing
operational software while leaving its primary functions
intact". In addition the definition is broadened to
include software enhancement or extending the capa-
bilities of the software to include new or modified
functions.

* Software Engineering. In the decade since its intro-
duction this term has assumed increasing significance
as the importance of structured software development
and maintenance methodologies has been established.
Yet, without a common body of techniques and tools
and standard procedures for implementing them, "soft-
ware engineers" have been engineers in name only.
The beginning of the revolution in thinking that must
occur before software can be truly engineered is
evident in literature on that subject. Researchers
are addressing the unknowns in software reliability
and maintainability, programmer productivity, program
functional modularity, etc. Software engineering is
generally defined as the body of knowledge which may be
applied to the design, construction, and modification
of computer programs (References 4, 5, and 6) . That
body of knowledge is limited at the present time, but
it is rapidly being expanded.

0 Software (Computer Program) Maintainability. The con-
cept of developing a capability for identifying the
level of maintainability of a computer program is fairly
new. It is an important adjunct to the creation of a
software engineering discipline which includes char-
acteristics such as reliability, portability, test-
ability, as well as maintainability. Quantitative
measurement of the maintainability factor has been
reported by at least one research team (Reference 7).
Software maintainability is defined as a measure of
the relative level of effort required to modify, update,
or enhance a computer program.

1.2 REVIEW SCOPE

As stated in the previous section this report does not at-

tempt to define or describe a discipline for software management

or maintenance. The basis for this report was the technical

papers, articles, and reports that are shown in the bibliography.

The information in this document was derived from those references

in order to present a review of software maintenance technology.

Research for compilation of the reference sources was conducted

at the following facilities;

Redstone Scientific Information Center, Redstone Arsenal,
Alabama.
University of Alabama in Huntsville Library, Huntsville,
Alabama.

Data and Analysis Center for Software, Rome Air Development
Center, New York.

Syracuse University Library, Syracuse, New York.

Material was selected based on its relevance to the subject

of software maintenance and the date it was published. Generally,

only papers and articles published since 1974 were selected.

For reports and books a publication date of 1976 or later was

observed. There were exceptions for material that $as deemed

to be particularly relevant or unique in content.

1..3 REPORT CONTENT

The balance of this report is organized by sections as fol-

lows:

Section II puts the software or program maintenance environ-

ment in perspective with an overview of that environment. The

purpose of the overview is to provide necessary background infor-

mation for an understanding of the maintenance technology discus-

sion. maintenance activities are discussed -'ith respect to three

bases of software maintenance as defined by Swanson (Reference 8).

These bases motivate technology application, that is, corrective

maintenance for software failures, adaptive maintenance for en-

vironment changes and perfective maintenance for software enhance-

rr,'nts. Where possible the continuity of these maintenance activ-

ities is established, from their initial implementation early in

the life cycle through their ultimate use in support of opera-

tions and maintenance phase requirements. In addition, softwareI

system and program maintenance engineering across the life cycle

is discussed. These topics encompass consideration of computerJ

1-4

proqram maintenance continuity throuqh the life cycle and specific

maintenance enqinoerinq functions. Maintenance tasks are dis-

cussed from the related viewpoints of the automated data system

manager and maintainer in administerinq maintenance. Finally,

tle concept of developinq maintainable software is explored.

Section III discusse. the technoloqy of software maintenance

as it is practiced today. From the research material a consis-

tent classification of maintenance functional requirements is com-

piled. The intent is to create a framework within which the tech-

nique.S and tool of software maintenance can be defined. These

definitions are structured so that comparisons may be made amonq

similar techniques and tools, and those that are complementary

may be readily identified. A discussion of maintenance activi-

ties in the operations and maintenance phase is included nxt.

Maintenance activities such as error identification/isolation,

system/program redesiqn, test and inteqration, quality assurance,

confiquration manaqement and others are identified. These Activ-

ities are then associated with maintenance technoloqy functions

through the use of a technoloqy/activity correlation matrix. The

matrix qualifies each technoloqy function by identifyinq its ap-

plication base in a corrective, adaptive or perfective role.

Section IV contains descriptions of maintenance techniques
and tools. Each technique or tool is discussed usinq a format
that includes the cateqory and characteristics, reference sources

for the description, status of usaqe, description of the technique

or tool, research findinqs from use and reports of actual usaqe in

maintenance. A tool/technique application matrix which summarizes

the characteristics of each technique and tool is shown.

Section V provides an assessment of the present state-of-

the-art in software maintenance technology. This assessment

is based on research data selected for the survey report. The

assessment leads to a presentation of goals or objectives to

be considered for further research into software maintenance

technology.

1-5

SECTION II

SOFTWARE MAINTENANCE OVERVIEW

2.1 LIFE CYCLE MAINTENANCE

The term life cycle maintenance implies that computer pro-

grams must be maintained both before and after they are released

to the user. This, of course, is true although during program

development maintenance activities are generally not referred

to as such. Not until the software is released to the user does

maintenance become a recognized support function. However, it

is useful to consider the implications of maintenance support

for computer programs from their creation to their deactivation.

The program maintenance function is created with the initialr

lines of code that the programmer writes. As the program design

is translated into form and function, the software internal organi-

zation is established. That structure, the details of which

are often left to the discretion of the programmer, can directly

influence future program and system maintenance requirements.

The second line of program code written creates an implicit

requirement to analyze and perhaps modify the first. Subsequent
lines likewise impact all previous ones. Thus, program mainte-i
nance begins and the concept that the first line of code estab-

lishes the dimensions of later maintenance operations (Refer-

ence 5) should be of interest to software developers and users

alike.

Accepting that a significant portion of operational main-

tenance is represented in extensions or revisions to the delivered

software design, and that typically there are undiscovered flaws

in all software when it is declared operational, then operators

and maintenance support organizations have a big stake in the

program development process. The literature suggests that all

functions of operational maintenance are affected by the devel-

opment process which produced the software. A precise relation-

ship between factors influencing program development and subsequent

2-1

operational maintenance costs has not been established. If such

a relationship exists and if it can be defined, it may be possible

to control the spiraling costs of software maintenance. There

are certain elements of the program development process that

must be considered prime candidates for establishing this relation-

ship. Among these are:

" Cost. Is a design to cost approach being used? Can
system requirements be satisfied within program budget
or must compromises be made in design and development?

" Performance. Are performance requirements completely
and consistently specified? Can performance require-
ments be met efficiently through the design as defined?
Must design or coding integrity be sacrificed in order
to meet performance requirements?

" Schedule. Are development milestones met? Is program
coding accelerated at the expense of adequate static
analysis in order to meet production schedules? Is
testing concluded based on the calendar rather than

achievement of test goals?

* System Life Expectancy Forecast. How long will this
system be maintained and operated? Does its operational
life expectancy exceed the period of development by
a predictable amount of time?

" Operational Maintenance Planning. Who will maintain
the operational system - the developer, user or third
party?

" Software Documentation. Is it complete, accurate,
and comprehensible?

2.1.1 Life Cycle Engineering Research

Interest in establishing a more complete understanding of

software engineering as a discipline has led to close examination

of program development and maintenance. That examination has

resulted in expression of certain ideas and concepts concerning

the nature of the maintenance environment and the processes which

influence program evolution. When viewed from the perspective

of life cycle maintenance for software these concepts and ideas

2-2

create a potential for significant improvement in the effective-

ness of applied software maintenance. Perhaps the most impor-

tant contribution of these theories is the insight they offer

into program creation and maintenance processes. The result is
a greater understanding of how program maintenance can be struc-

tured and implemented as a unified function. Continuing research

in this area should produce an even clearer picture of maintenance

requirements and the technology that may be applied to satisfy

them.

Illustrative of the research being done are the definition

of program evolution dynamics by Belady and Lehman (References 9

and 10) , system partitioning evaluation by Uhrig (Reference 11),

and software performance analysis by Yau and Collofello (Refer-

ence 12).

2.1.1.1 Program Evolution Dynamics. Using a large program (OSI

360) as a research vehicle Belady and Lehman studied its evolution

after initial release. They examined data from each version or

release of the program in order to isolate and characterize the

interaction between management activities and the programming

process. These data included system size measures, module counts,

release dates, manpower and machine usage, and costs for each

release.

As expressed by Lehman (Reference 10) , "The most fundamental

implication of our observations is the existence of deterministic,

measurable regularity in the life cycle of an application program

or of a software system". That regularity is formally expressed

in the authors' three laws of Program Evolution Dynamics.

* Law of Continuing Change. A system that is used under-
goes continuing change until it is judged more cost
effective to freeze and recreate it.

* Law of Increasing Entropy. The entropy of a system
(its unstructuredness) increases with time, unless
specific work is executed to maintain or reduce it.

2-3

* Law of Statistically Smooth Growth. Growth trend
measures of global system attributes may appear to
be stochastic locally in time and space, but, statis-
tically, they are cyclically self-regulating, with
well-defined long-range trends.

In the authors' view these laws function to "direct, constrain,

control, and thereby regulate and smooth, the long-term (program)

growth and development patterns and rates".

2.1.1.2 System Partitioning Evaluation. In his definition of

a life cycle model for evaluation of system partitioning, Uhriq

(Reference 11) expresses an important concept relative to opera-

tions and maintenance phase activities. The evaluation model

is proposed as a means for quantitative comparison of alternative

system partitioning 8chemes. System partitioning refers to seg-

menting the system into areas of responsibility such as development,

test, operations and maintenance and growth. Evaluation measures

in the areas of cost, schedule, performance, and risk are taken

across the system life cycle to provide input data for the model.

In the words of the author, "A major feature of the model is

its recognition of three major dependencies: (1) development

productivity on the amount of coordination required amonq elementsr
(areas of responsibility) , (2) test cost on the number of elements

in the test configuration, and (3) reliability and maintainability

on the manner in which technologies are distributed throughout

the system".

In his discussion of operations and maintenance dependencies

Uhrig introduces the concept of the operations and maintenance

phase as an abbreviated repetition of the preceding life cycle

phases. That is to say, maintenance activities routinely encompass

system definition, design, code, and test tasks. Thus, the opera-

tions and maintenance phase may be looked upon from the mainte-

nance viewpoint as a microcosm of system development. As cor-

rective, adaptive or perfective maintenance is performed on the

software these component tasks are accomplished. This concept

2-4

provides fresh illumination of the software maintenance environ-

ment and perhaps a basis for new approaches to developing an

understanding of its requirements.

2.1.1.3 Software Performance Analysis. In an interim report

on their research into maintenance effects on software performance,

Yau and Collofello (Reference 12) present a maintenance technique

for predicting those effects. Maintenance changes implemented

on large, complex software systems can disturb prior states of

functional and performance equilibrium. Functional disturbances

existing either before or after the maintenance can be dealt

with by implementing conventional techniques. Yau and Collofello

propose a specialized approach for dealing with disturbances to

the performance characteristics of a software system. They have

defined and analyzed "mechanisms for the propagation of perform-

ance changes, performance attributes, and critical software

sections". From these results they have developed the maintenance

techniques. Much of the detailed information and research data

supporting development of this technique remains to be published

in a second report.

The purpose of their research is to develop a set of criteria

which~ maintenance personnel may use in selecting optimum software

modifications. Obviously, maintenance personnel must consider

* both functional and performance impact when implementing a repair

or update modification to software. The technique proposed in

the interim report supports determination of performance effects

of software modifications, system retest after maintenance changes

and prediction of worst-case effects of proposed changes. Ac-

cording to the authors this technique contributes to a software

engineering approach to maintenance.

This report identifies eight candidate mechanisms by which

software modifications cause performance changes to be propagated

throughout a software system. They are:

2-5

" Parallel Execution. Modifications affect a module's
capability to be executed in parallel with other
modules.

* Shared Resources. Modifications disrupt timing among
modules sharing resources.

* Interprocess Communication. Modifications disrupt
timing of message transmission between modules.

* Called Modules. Modifications affect the performance
of a module that is called by other modules.

" Shared Data Structures. Modifications alter the storage
and retrieval times for data or cause saturation of
the data structure to be used by multiple modules.

" Sensitivity to the Rate of Input. Modifications change
input data rate leading to saturation and overflow
of data structures or interruptions in processing.

" Abstractions. Modifications to modules using abstrac-
tions cause "hidden" performance changes.

* Execution Priorities. Modifications disrupt the calling
sequence of modules or priority allocation.

In summary, the maintenance technique is implemented in

two phases. Phase one consists of program analysis and data

base production. Phase two is applied during the maintenance

process using data from phase one. In outline form the steps

contained in the two phases are as follows:

Phase I

Step 1. Decompose program performance requirements
into key performance attributes.

Step 2. Determine propagation mechanisms present
in the program.

Step 3. Identify critical sections of the program.

Step 4. Identify performance dependency relationships.

Phase II

Step 1. Identify critical sections to be affected

by maintenance activity.

2-6

Step 2. Determine corresponding performance attributes
affected by maintenance activity.

Step 3. Identify all performance attribu,es affected
by changes to performance attributes in previous step.

Step 4. Identify performance requirements affected
by the maintenance activity.

2.1.2 Life Cycle Maintenance Categories

In his paper "The Dimensions of Maintenance", Swanson (Ref-

erence 8) presents a discussion of a new typology for application

software maintenance. He develops maintenance categories or

bases, as he calls them, in a preliminary step to development of

a candidate set of maintenance performance measures. These meas-

ures are proposed as elements of a maintenance data base to be

established. This data base is to function as a repository of

maintenance measures which will be used in research to assess

the dimensions of software maintenance. Once these dimensions

are known for any data processing environment then performance

criteria can be established and used to promote improved mainte-

nance management.

The implication of those maintenance bases to this review

of maintenance techniques and tools is that they provide a reason-

able framework within which to discuss maintenance technology

application. The bases represent a commonsense approach to

defining types of maintenance performed and they encompass the

entire spectrum of software repair activities.

A description of the bases is presented in summary form

in a table taken from the Swanson paper and shown below.

TABLE 2-1. SUMMARY - BASES OF SOFTWARE MAINTENANCE

A. CORRECTIVE

1. Processing Failure
2. Performance Failure
3. Implementation Failure

2-7

TABLE 2-1. SUMMARY - BASES OF SOFTWARE MAINTENANCE (CONCLUDED)

B. ADAPTIVE

1. Change in Data Environment
2. Change in Processing Environment

C. PERFECTIVE

1. Processing Inefficiency
2. Performance Enhancement
3. Maintainability

2.2 MAINTENANCE ENGINEERING

Given the definition of software engineering presented in

the introduction to this report, it might be of interest to refine

that definition to include specialized subdisciplines. Mainte-

nance engineering could be one or these subdisciplines.

The term maintenance engineering implies the existence of

an organized body of scientific and technical information that

may be applied to maintaining computer software systems. Unfor-

tunately, state-of-the-art development is such that a true soft-

ware maintenance engineering discipline does not exist. Under-

standing and general agreement within the data processing industry

on the definition of software maintenance tasks has been achieved.

A number of methodologies that may be used to improve maintenance

for a variety of specialized software systems have been documented.

Articles and papers, citing the rising volume and cost of opera-

tional maintenance for computer programs, call for recognition

and admission of the significance of operational maintenance

support today. It is apparent from a review of this literature

that concern for maintenance requirements is rising and tentative,

preliminary definition of maintenance engineering procedures

is being attempted.

One of the first steps in the process of formalizing a main-

tenance engineering discipline is developing a clear understanding

of computer program maintenance requirements. As stated earlier,

program maintenance spans the tasks of correcting execution faults,

2-8

adapting for changed environment, perfecting to improve performance,

and modifying for functional enhancement. Maintenance requirement

definitions must encompass the tasks within the context of the

computer program life cycle. Table 2-2 identifies a set of capa-

bility requirements which have been defined for embedded computer

systems maintenance (Reference 13).

TABLE 2-2. SOFTWARE MAINTENANCE/MODIFICATION REQUIRED CAPABILITIES

* PROBLEM VERIFICATION

-REPRODUCE TROUBLE SITUATIONS
-VERIFY REPORTED SYMPTOMS
-IDENTIFY CAUSE: SOFTWARE, HARDWARE, INTERFACE

* DIAGNOSIS

-SYSTEM STATE SPECIFICATION/SEQUENCE CONTROL
-SOFTWARE/HARDWARE TEST POINTS ACCESS
-TEST DATA COLLECTION
-TEST DATA ANALYSIS

* REPROGRAMMING (NEW REQUIREMENTS OR SPECIFIC
CORRECTION)

-SOURCE CODE MODIFICATION
-OBJECT CODE GENERATION
-SYSTEM RELOAD

* BASELINE VERIFICATION/REVERIFICATION

-SCENARIO CONTROL
-DATA COLLECTION
-DATA ANALYSIS

The requirements listed in this table could be considered as appli-

cable to all classes of software systems. Stated in the broader

context of maintenance requirements this list should also include:

* Configuration Management

-Program Revisions Control

-Baseline Configurations Documentation

Formal definition of a workable maintenance engineering disci-

pline can only be achieved with identification of the technology

and procedures supporting an integrated approach to satisfying

2-9

maintenance requirements. The compilation of typical techniques
and tools along with the maintenance activities/technology cor-

relation contained in this report provides a basis for further

research into maintenance engineering. The material in this

report will support data collection and analysis to identify

maintenance engineering functions. This research should produce

as a minimum the following:

* A minimum set of unique techniques and tools that
satisfy maintenance requirements for all classes* of
software systems.

4D Standard procedures for application of the set of
techniques and tools identified above.

" A standard set of metrics for specifying the degree
of effectiveness of maintenance engineering proce-
dures such as error removal rate, compilation ratio,
fault identification rate, etc.

* A glossary of common maintenance engineering terms.

2.3 ADMINISTERING MAINTENANCE

Application of software maintenance technology is a direct

result of joint efforts by the software system manager and main-

tainer. Each has unique functions to perform and a particular

perspective on maintenance which governs his or her approach

to the task of maintaining computer programs. Those functions

and perspectives should be complementary to assure effective

application of maintenance techniques and tools. Published lit-

erature on the subject of software maintenance application pre-
dominantly features examination of manager and management aspects

of maintaining computer programs. Software maintainer concerns

and responsibilities have not been accorded equal attention by

*Definition of software system classes, such as data base manage-
ment, process control, operating system, etc., is a concept
that must be formalized. Class differentiation in this context
implies that there are varying maintenance requirements among
the classes.

2-10

researchers and writers. Nevertheless, both the manager and main--

tainer participate jointly in the implementation of maintenance

techniques and tools and both points of view are discussed here.

In his discussion of software management from the corporate

level point of view , Cooper (Reference 14) includes summary

descriptions of management obstacles and pitfalls. While the

obstacles and pitfalls he describes address software management

in general they are applicable to the specific concerns of main-

tenance management. The following comments focus on the special-

ized environment of software maintenance obstacles and pitfalls.

* Corporate decision makers' lack of computer related
experience. This is a direct result of the relative
newness of the entire data processing industry. For
a manager overseeing software maintenance tfis lack
of experience is often demonstrated through impatience
with system limitations and intolerance for the costs
of system enhancements.

* Hardware orientation of software management mechanisms.
Most directives and techniques for controlling the
development and maintenance of software have been adopted
from hardware engineering disciplines. Thus, quality
assurance, reliability and maintainability, and con-
figuration management procedures reflect an orientation
toward tangible products. Their translation for use
within the environment of intangible softwdre compo-
nents has not been a completely successful one. The
manager of maintenance must judiciously apply these r
controls in ways that tend to make each application

somewhat unique to the system on which they are used.

* Excessive concern for development of software with
little consideration for life cycle costs. This has
significant impact on the tasks of managing and main-
taining software after development. Computer programs
that are developed in the most expeditious, cost-effec-
tive way to meet performance standards are not neces-
sarily maintainable. Often the development project
manager must sacrifice software design features that
are conducive to program maintainability in order to
meet cost, schedule or performance requirements. This
leaves the user with software that is costly to
maintain.

2-1l

" Increased software system complexity when developed
or maintained as a result of efforts to introduce state-
of-the-art design, expand requirements as defined or
introduce assembly language routines. Complexity is
not inherently bad for maintenance if introduced in
moderation and if documentation is adequate. In
today's data processing cnvironment of expanded pro-
cessing and storage capabilities there is less need
than ever before for complex designs and elegant code.
Considering the increasing costs of software deve).-
opment and maintenance it makes more sense to produce

straightforward program logic and code.

" Contract "buy in" for acquisition of a software system.
This situation affects maintenance only indirectly
as a result of the effects of any cost cutting on the
part of the developer. The impact of these constraints
is similar to that described previously under excessive
concern for software development.

" Risk, cost, and reliability-estimating deficiencies.
With the exception of reliability estimating these
estimation techniques do not directly influence main-
tenance management. Accurate reliability estimation
would greatly enhance the maintenance managers effec-
tiveness in allocating resources for program maintenance.

* Absence of common software development or maintenance
practices. T2his places managers at all levels in the
awkward position of having to learn or relearn to "read"
management control data from each new system. In part,
the purpose of this report is to establish a basis for
identification of common maintenance practices.

Successfully coping with the obstacles and pitfalls of main-

tenance management requires the skilled and disciplined exercise
of management control.s at all levels. Software maintenance manage-

ment has in the past been a "seat of the pants" operation with
on the job training as the primary learning medium. This is

beginning to change as more research is conducted and greater

understanding of the dynamics of the management environment is

achieved.

The software maintenance manager does have a growing body

of information and technology available to aid in directing and

controlling maintenance tasks. Unfortunately, because general

awareness of the significance of maintenance is coming late to

2-12

the data processing industry there are no standards established

for maintenance management. Technology and concepts must be

examined and evaluated on an individual basis. Consequently,

it is still necessary for a manager to piece together any manage-

ment program to be implemented based on professional experience

and understanding of system requirements. One writer has pro-

posed a set of broadly defined management tools for the software

maintenance activity (Reference 13). These tools, encompassing

all types of software maintenance, offer a framework for struc-

turing a maintenance management program:

* A comprehensive system/software trouble reporting
system.

* A complementary set of software-oriented test pro-
cedures for operating command use.

" A mechanism for controlling and tracking operational
program revisions.

" A Software Configuration Control Board (SCCB) to re-
view and authorize changes.

Data collected through an industry wide survey of managers

of systems and programming departments has provided new insight

into the problems associated with application software maintenance

(Reference 15) . In evaluating the maintenance function most

respondents characterized maintenance as being more important

than new system development. Also, when those surveyed were

asked to rank problem areas of maintenance, the majority indi-

cated~ that user requests for system enhancements and extensions

comprised the most significant problem area. Thus, maintenance

is perceived to be a software manager's most important responsi-

bility and evolutionary modifications appear to dominate other

maintenance activities.

What about the software maintainer? Does he or she view

maintenance as an important or challenging task? Unfortunately,

the maintainer has received scant attention by researchers and

2 -13

writers. There is reason to believe, however, that proqram main-

tenance personnel typically do not consider their status or their

assiqned tasks in a very favorable liqht. Gundeman (Reference

16) states that, "Traditionally, proqram maintenance has been

viewed as a second-class activity, with an admixture of on-the-job

traininq for beqinners and of low status as.,;iqnments for the out-

casts and the falln" It this is a common perception of proqram

maintenance work it is not diff icult to understand why it would

be shunned by most proqrammers.

A number of S:uqqestions have been offered that relate to im-

provinq maintenance proqrammer motivation and the environment of

ma i ntenance programmi nq . One of the most straiqhtforward involves

exchanglinq the term maintenance for production, creatinq "produc-

tion proqr.mmi nq" (Reference 3). As the writer points out this

re'move, the connot ation of unskilled labor that i s attached to

maintenance and p-ovides- a link to the coneept of an enqineerinq

di scipline, a!; in sof tware enqineerinq, of which production pro-

qramminq would be a part . Of cours1e, it would be very dift icult

to i mpl emient a chanqe such As, thi ,; thlro1t(lhoL0t the data processinq

indutry. Ilowever , it is certainly worth consideri nq. Another

idea presented concerns developinq a set of inteqrated maintenance

procedures and a comprehensive support-inq technology fot the main-

tenance .,traff (Reference 14). 'Ihese procedures and technoloqy

Are to be system oriented and must be defined and in place before

a soI lware sys tem enter, the operat ions and maintenance phase.

It thi's i:5 done t h, cost ly and time Con suming "ad hoc" approach

to proIqram maintenance can be avoided. The information contained

in ,ction; Ill and IV of this report is offered as an initial

:-top in creatinq this planned maintenance approach. F inally,

the concept of manntainable software has been presented as an

approach to improv i n the proquram maintenance env i ronment . I f

comput-er proq rams can be desiqned with at least some consider-

ation bein q iven to those.(- characteristics that promote their

maintainabhi I ity then the maintenance (production) programmer's
job siat i, st 't i on wil 1 undoith tedly improve.

I4

In his discussion of major aspects of software management,

Daly (Reference 17) develops an approach to managing software

development that results in early introduction of the maintenance

programmer to any new software. During the testing phase, prior

to acceptance, new or modified computer program operation is

verified by both the chief programmer (responsible for develop-

ment) and the maintenance programmer (responsible for maintenance

after acceptance) . The chief and maintenance programmers are

responsible for integration test planning and each reports on

testing progress to their respective line superiors. This pro-

vides an important cross-check on testing performance. In addi-

tion the maintenance programmer is responsible for assuring that

both the program code and documentation meet established standards

prior to acceptance. Later, a system test will be conducted

by a team composed of chief and maintenance programmtrs to check

the interoperation of all subsystems with the new software.

Early involvement by the maintenance staff produces timely program

performance feedback to the design staff which facilitates the

software transition from development to operational status.

Assessing the psychological complexity of understanding

and modifying computer programs (one measure of the level of

difficulty experienced by a software maintainer) was the goal

of research conducted by Curtis, et al (Reference 18). In the

study, Halstead and McCabe complexity measures and program length

were used as basis for correlation of test data from two experi-

ments using a group of professional programmers as test subjects.

In one experiment the subjects were asked to reconstruct a func-

tional equivalent for each of three programs from memory with

timed periods for study and reconstruction of each. The second

experiment involved completion of a specified program modification

by each subject with no time limitation for completion. The

study results suggest that program length and McCabe's complexity

2-15

measure may be used to predict the level of difficulty in achieving

program understanding. As reported by the researchers, "All

three metrics (Halstead, McCabe, and program length) correlated

with both the accuracy of the modification (in experiment 2)

and the time to completion. Relationships in both experiments

occurred primarily in unstructured rather than structured code,

and in code with no comments. The metrics were also most predic-

tive of performance for less experienced programmers. Thus,

these metrics appear to assess psychological complexity primarily

where programming practices do not provide assistance in under-

standing the code".

Finally, instituting a policy of scheduled maintenance gives

a more structured environment in which to work. Scheduled main-

tenance complements system version production control in that all
system modifications, enhancements and corrections, are imple-

mented in batches on a scheduled basis. Of course, emergency

maintenance is still performed on a priority basis, but routine

changes are introduced according to a schedule. Lindhorst

(Reference 19) cites several benefits to be derived from this

approach:

" Consolidation of requests. Some efficiency can be
achieved because multiple changes to the same program
or module can be combined under one maintenance task.

* Programmer job enrichment. The maintenance schedule
should provide an opportunity for selective programmer
upgrade training or career broadening assignments.

" Forces user department to think more about the changes
they are requesting. Delayed implementation of new
capabilities will tend to filter out those changes
that will be short lived, unimportant or both.

* Periodic application evaluation. Scheduled changes
provide convenient milestones for consideration of
the cost effectiveness of continuing the current system.

" Elimination of the "squeaky wheel syndrome". When
users realize that change requests all receive equal
consideration and implementation of the changes is

2-16

on a planned basis, there is less cause for attempting
to pressure the maintenance staff.

" Programmer back-up. The maintenance staff manager
has more latitude in assigning his personnel to tasks
and can conduct crosstraining within the maintenance
teams.

* Better planning. Long and short range staff planning
can be more effectively accomplished when the workload
can be predicted with a reasonable degree of accuracy.

" Data processing change requests are regarded as being
as important as user requests. Under this type system
it is possible to give both user and change requests
fair consideration when planning for the next scheduled
maintenance period.

There are shortcomings and problems with instituting scheduled

maintenance. First, the concept must be approved and backed

by senior monagement. Without this support adherence to the

policy of planned implementation of data processing updates and

changes cannot be enforced. Additionally, the changeover from

old maintenance policies to scheduled maintenance can be traumatic

for the organization.

2.4 MAINTAINABLE SOFTWARE

Computer programs may be designed and coded so that it

is relatively easy to isolate and correct errors or to satisfy

new requirements. Such software is said to have a high degree

of maintainability. To be useful as a specification criterion

the characteristic of maintainability should be quantifiable and

measurable. By developing maintainability measures or metrics

that can be applied to all computer programs a capability for

establishing maintainability standards exists. These stan-

dards could be specified for any software system before it

is acquired. Not only could they be specified, but as measur-

able standards they could be enforced. When applied, the con-

cept of "designing in" software maintainability should result

in decreasing software maintenance costs. There are a number

of systems being developed or in use that can be applied

2-17

during software design to promote maintainability in the resultant

computer programs. Among these are the following systems:

" ISDOS - a computer aided technique for requirements
analysis which employs the Problem Statement Language
and Problem Statement Analyzer

" R-Nets - a technique for organizing software pro-
cessing paths

* HOS - an axiomatic approach to definition of a soft-
ware system

* FACT - a diagramatic method for functional definition
of software operational structure

" DECA - a technique for organizing, validating, and
portraying the design of a software system

" SADT - a vehicle for structuring and documenting the
software development process.

Development of maintainable software is considered a realisticI
and achievable goal. One aspect of research into attaining that

goal involves definition of viable software metrics and procedures

for their measurement. Gilb (Reference 20) addresses this question

in his book Software Metrics. Two approaches to measuring main-

tainability 'of computer programs have been reviewed for this

report.

2.4.1 Software Metrics Definition

As described by Walters and McCall in Reference 7 the defini-

tion of a set of software quality metrics ultimately leads to

a capability "for quantitatively specifying the level of quality

required in a software product". This approach was developed

as a result of a study of software quality factors. The purpose

of the study was to develop guidelines for objective software

quality specification in system requirements documentation.

The methodology presented in Reference 7 consists of the following

steps:

2-18

* Determination of software quality factors whose com-
bined values will represent a quality rating.

0 Identification of criteria to be used in rating each
quality factor.

0 Definition of criteria metrics and a functional rela-
tionship among them for developing a quality factor
rating.

0 Validation of metrics and functions using existing
software system historical data.

0 Translation of study results into project management
guidelines.

The software quality factors identified for the study repre-

sent the most commonly accepted and desirable characteristics

of software. For application in this methodology th y are grouped

into three sets representing their orientation towarl the func-

tional areas of product revision, transition, and operation.

This facilitates expression of factor ratings in terms of user

interaction with the software product. The quality factors iden-

tified are maintainability, flexibility, testability, interopera-

bility, reusability, portability, correctness, reliability, ef-

ficiency, integrity, and usability. This discussion will focus

on the maintainability factor which is associated with product

revision.

Maintainability criteria are established through expansion

of the definition of maintainability into specific attributes

which can be objectively measured. Those criteria are consistency,

simplicity, modularity, self-descriptiveness, and conciseness.

Some of these criteria are also criteria for the reliability

quality factor. Shared criteria are used to describe factor inter-

relationships and occur between other quality factors. Once the

criteria are identified they are linked with specific software

life cycle phases both for application of criteria metrics and

for indication of when they will affect software quality.

Definition of criterion metrics is based on two considera-

tions; they must support quantitative measurement of the criterion

2-19

and they must be accessible through available software infor-

mation. Two types of metrics are defined. One type is a value

measure with a given range of values and the other is a binary

measure of the existence or absence of some factor. Metric units

are carefully chosen and expressed as a "ratio of actual occur-

rences to the possible number of occurrences". The set of values

representing those metrics supporting the maintainability criteria

becomes the input domain of a normalization function which produces

the final maintainability rating. That function is derived by

applying the principles of statistical inference to the metric

values and establishing appropriate mathematical relationships

among the values. In the case of maintainability the final

quality rating is expressed in terms of the number of man-days

required to correct a software error. Development of that

function is to be accomplished as a result of further research

and experimentation.

Validation of the normalization function is accomplished

through an iterative process of comparing predicted quality

ratings with actual ratings. The authors state that with more

experience in applying these metrics and more data to support

further refinement of the functions, confidence in their use as

predictions of software quality will grow.

2.4.2 Design by Objectives

In his paper on the subject of controlling software maintain-

ability, Gilb (Reference 21) asserts that maintainability can

be designed into programs and systems. He offers as a methodology

for accomplishing this a quantitative process which he has called

Design by Objectives (DbO). For those familiar with management

systems, DbO resembles Management By Objectives (MBQ) in that

identification of quantifiable and achievable goals are the focus

for both methodologies. Also like MBO, DbO offers a structured

and disciplined set of procedures for achieving the goal or goals.

DbO is based upon specification of software attributes that are

2-20

accessible and measurable. Manipulation of those attribute values

is accomplished through application of an integrated set of design

specification tools. DbO may be applied during the development

process to establish control of the attainment of any system

quality goals. The cited paper discusses only an application

of DbO to attain a desired degree of maintainability.

Creation of a DbO program begins with definition of a set

of design goals. The goals must be quantifiable particularly

at the subgoal level. The goals and subgoals form a system attri-

bute specification. This specification is documented in matrix

form using subgoals and descriptive parameters. The parameters

establish quantifiable levels of achievement for each subgoal.

These parameter or attribute values entered into the attribute/

subgoal matrix represent degrees of attainment of the subgoals.

Based on system characteristics and development requirements

the subgoals are subjectively prioritized.

Next a function/attribute table is created. A list of system

functions which are "of interest at some stage of design" and

are quantifiable in some form is identified. These functions

and the attributes from the system attribute specification are

entered in a matrix form which will be the functio~n/attribute

table. The elements of this matrix contain symbols that reference

a coded description list of techniques. When the referenced

technique or techniques are applied the result should be that

the particular function will have a satisfactory amount of the

indicated attribute. In order to determine the total quality

of a function the attribute qualities must be summed. According

to the author the summing is intuitive at this point, but appli-

cation of certain engineering principles may offer a more dis-

ciplined procedure for this.

The DbO methodology is proposed as an engineering oriented

approach to achieving controlled quality levels in software.

Through implementation of the function/attribute table, goal

2-21

directed use of resources and techniques is realized and contri-

bution from the use of the techniques is quantified. DbO en-

courages a more disciplined examination of the software design

process. It offers the software developer a greater potential

for more efficient use of his resources in meeting design ob-

jectives.

2-22

SECTION III

SOFTWARE MAINTENANCE TECHNOLOGY

3.1 MAINTENANCE FUNCTIONS

As has been previously established, software maintenance

may be categorized as corrective, perfective or adaptive. These

bases of maintenance characterize the application of techniques

and tools and are an important element of their definition.

Whether the maintenance is corrective, adaptive or perfective,

commitment of resources is required. In order to develop a viable

maintenance program and a capability for committing those resources

in an effective manner, management must understand the require-

ments of software maintenance and how the available technology

supports those requirements.

Maintenance requirements may be expressed at the highest

level in terms of the functions performed in maintaining soft-

ware. An important part of this review of maintenance technology

was consideration of how that technology is applied to satisfy

maintenance requirements. Implicit in each technique or tool

description is consideration for how that technology item sup-F
ports the maintenance functions.

Definition of the functions of maintenance is taken from

"Software Engineering" by Boehm (Reference 4) as follows:

* "Understanding the existing software: This implies
the need for good documentation, good traceability
between requirements and code and well-structured and
well-formatted code."

0 "Modifying the existing software: This implies the
need for software. hardware, and data structures which
are easy to expand and which minimize side effects
of changes, plus easy-to-update documentation."

0 "Revalidating the modified software: This implies
the need for software structures which facilitate
selective retest, and aids for making retest more
thorough and efficient".

3- 1

3.2 MAINTENANCE ACTIVITIES

Discussion of maintenance activities will focus on the opera-

tion and maintenance phase even though maintenance is not limited

to that phase. Maintenance during software development tends

to be unstructured and unrecorded. Current literature suggests

that delivered software is no longer viewed as a finished product

with correction and update considered exceptional tasks. Now,

a more realistic approach to operation and maintenance phase

requirements seems to prevail among users. That approach accepts

the delivered software as having attained an acceptable level

of operational performance, but realizes that a potential for

undiscovered operations flaws exists a nd that changing operational

requirements will force software updates. In short, all computer

systems, haidware and software, exist in an operational environ-

ment that is naturally dynamic. If systems cannot exhibit some

degree of structural and logical flexibility, then their oper-

ational utility will be limited and even their continued existence

will be in doubt. Users will demand systems that are more respon-

sive to their needs and more economical to maintain.

Operation and maintenance phase activities must support

all functions of maintenance. Understanding, modifying, and

revalidating computer programs involves activities that focus

both on the correction of existing code and the development of

new code or programs. For this reason it is appropriate to include

in this phase activities that are usually thought of as develop-

ment phase activities. In the correlation matrix that is pre-

sented in the following subparagraph these activities appear

as matrix elements. They are used to specify the particular

functional orientation of each technique or tool employed in

the operation and maintenance phase. Those activities are:

* Requirements Analysis

* System/Program Redesign

* Code Production

3-2

* Test and Integration

* Documentation

* Error Identification/Isolation

* Quality Assurance

0 Configuration Management

Figure 3-1 illustrates the relationship between maintenance

functions and the above activities. In this figure activity

support of a function or functions is indicated by line(s) con-

necting the activity and the function(s). To emphasize that to-

gether, functions and activities are invoked by the causes and

choices which motivate software maintenance, the bases of soft-

ware maintenance are included in the lower portion of the fig-

ure.

ACTIVITIES

FUNCTIONS

REQUIREMENTS IDENTIFICATION/
ANALYSIS UNDERSTANDING ISOLATION ,

SOFTWARE

CONFIGURATION

MAAGEMENT -

I.

TEST AND :

SREVALIDATING I,
SOFTWAREC ETATION i

ADAPTIVE P PER FE CT71V:

1-360-2061

Figure 3-1. Functions - Activities Hierarchy

3-3

3.3 TECHNOLOGY/ACTIVITY MATRIX

As a preliminary step in the process of identifying and

describing software maintenance tools and techniques, a set of

maintenance technology functions has been defined. Each tech-

nology function, such as performance monitoring, static code

analysis, path flow analysis, and test data generation is sup-

ported by one or more maintenance tools and techniques. These

functions provide a logical link between the software maintenance

requirements for understanding, modifying and revalidating com-

puter programs and the description of how tools and techniques
satisfy those requirements.

Correlation of maintenance technology functions with mainte-

nance activities is depicted in Figure 3-2. The linkage between

technology and activity is further refined by indicating on the

correlation matrix the nature of the technology application in

terms of bases of software maintenance (corrective, adaptive

or perfective).VP

3.3.1 Maintenance Technology Categories

Maintenance technologies are grouped somewhat arbitrarily

by primary function in order to avoid repetition of the same

technology in several different categories. For example, static [
code analysis is grouped with verification and validation tech-

niques but is also a valuable tool for redesign analysis. The

complete application of each technology can be determined by

reading across the matrix row for that technology. The specific

tools or techniques which utilize each maintenance technology

are shown in the Maintenance Tools and Techniques Applications

Matrix, Figure 4-1.

3-4

C P Ar

A'', ': !t, ; AA

Pt At ANAAtV I S t. ,' aV% , A " AIS A~

FA!. . A A A 2 Ar

21t '.AAA ;' I'ANA , A.'',Ar ;ArAE 'M' :E irA

.. .' .. , .,'' ' "0

.=K ; .. A.A, , -. ,A~ , ,P(A [

P C IN AN, ANA,Y5!'

"rA A W 1 hr At

r- Mt.-PAt , r .A ,P

:.A, I,,N .' , ., ,

ACAP AA

.... ,' .,; , ,: , !? , ,, C.A.P

C 'Ar' ,P

A- ,P

:''

,t, " ,C, , Aj

AtC. AACAP

C, A." CAA Ar

AC.Ap A.P

AN BA. CAf

AA- A 4. C A,P AA

.A.A A.! r

Aj ArP

IW A '[*, Vi A . -C r., CA
I. A A , j,A

F'igure 3-. aiteaceTehnloy A vty CreainMti
3-5

-- " . .P A ,-

AIA P

rf' C%-hA2j. A:: A2G .AP C..

:u : AAO A A Ar A A

ACF ~ ~-AVA, A jA.AA

Figure 3-2. Maintenance Technology/Activity Correlation Matrix

3-5

3.3.2 Maintenance Technology Definitions

3.3.2.1 Configuration Control

a. Support Libraries

Libraries provide a constantly up-to-date representation

of the system's source and object code and a past history of coding

changes. Test data and test history may also be included. Li-

braries are useful in maintenance programming support by assuring

that the modifications are made to the proper version of a pro-

gram and by improving the visibility of the system for cross-

checking. They can also be used as a centralized data base for

such management functions as version control, test case mainte-

nance, and project reporting.

Programs which implement support libraries are commercially I

available and include Applied Data Research's LIBRARIAN and Inter- I
national Business Machines' Program Production Library (PPL) (Ref-

erence 22).

b. Automatic Reconfiguration

This technology allows rapid reconfiguration, based on

stimuli from the run-time environment, of a software system to

reflect changes made to a number of its modules.

C. Status Reporting

An adequate data reporting, repository and control

system provides the capability for project control by assuring

that the status of all problems, deficiencies, changes and con-

figuration data are reported to the responsible manager foranal-

ysis. These reports also assist in error isolation during the

maintenance phase by providing information concerning the latest

program change, such as date, time, statement numbers, perscn

responsible, etc.

3-6

3.3.2.2 Operations Monitoring/Evaluation

a. Performance Analysis

This technology assists the analyst in determining

existing systems performance characteristics for purposes of

improving the performance or assessing the effect of proposed

modifications. Performance analysis becomes necessary when a

system is too complex to be informally or analytically under-

standable (Reference 23) . Performance evaluation is concerned

with the efficiency and effectiveness with which a computer sys-

tem may perform. Performance goals are generally stated in terms

of rates of work output, utilization of devices, or satisfaction

of restraint conditions.

b. Failure Data Analysis

Failure data analysis is a general category used to

designate technologies which measure or predict mean-time-between-

failures (MTI3F) or mean-time-to failure (MTTF) or otherwise

quantify failure data for user analysis. The data is primarily

of interest to managers for maintenance scheduling and quality

assurance.

C. Performance Monitoring

Software monitors provide detailed statistics aboutF
systems performance during production, including core usage,

queue lengths, program utilization, etc. The measurements can

be used in tuning existing programs and resolving resource con-

tention problems.

Hardware monitors obtain signals from the host computer

system through probes attached directly to the computer's cir-

cuitry. The data is reduced to provide information about CPU

utilization, channel activity, etc., which can be used to improve

program and system performance.

Monitors can operate together or separately, either con-

tinuously or by sampling.

3-7

d. Automatic Fault Recovery

This experimental technology addresses the identifica-

tion of logic faults as they occur during production runs and

attempts to recover from the fault without halting the run by

switching to backup files, using alternate program segments,

etc. If automatic recovery cannot be accomplished, the run may

be halted with appropriate diagnostic messages and the program

made available for interactive debugging.

3.3.2.3 Redesign

a. Requirements Determination

The requirements determination technologies included

in this report have been limited to technologies specifically

identified in the literature as applicable to the maintenance

phase. These technologies are usually directed toward the re-

quirements for system enhancements and functional changes but

they may also be needed to determine the requirements of the

existing system. For example, the first step in the Yau and

Collofello maintenance technique (Reference 12) is the decomposi-
tion of the existing system performance requirements into the

key performance attributes.

b. Redesign Analysis

This technology assists the analyst in understanding

the existing system, determining the portions of the system af-

fected by proposed modifications, and in choosing between alterna-

tive approaches to the redesign.

C. Pseudo-Code

Pseudo-Code, or program design language, is a "pigdin"

natural language with the syntax of a structured programming

language. Pseudo-Code permits the quick construction of a rough

outline of an entire problem solution, with more and more detail
being added as needed, and an orderly transition into the actual

programming language.

3-8

3.3.2.4 Code Production and Analysis

a. Structured Programming Aid

The general category "structured programming aid" is

listed separately for ready identification in the Tools and Tech-

niques Applications Matrix. The various types of aids are shown

in individual categories, such as, language preprocessors, stan-

dards enforcers and pseudo-code.

b. Formatter

An automatic formatter can be used to improve the reada-

bility of a program for maintenance purposes, to assist the Dro-

grammier in debugging program changes, and to aid in the production

of documentation.

C. Preprocessor

A preprocessor is a computer program used to add capa-

bilities to a system without changing the existing compiler or

the system itself. Preprocessors which support structured con-

structs are a typical example.

Reifer (Reference 22) reports a list of well over 50

preprocessors used to extend FORTRAN for structured programminq.

A few representative preprocessors are described in this study

for purposes of illustration.

d. Restructuring Program

A restructuring program converts an unstructured source-

language program into its equivalent structured replacement. The

structured program is easier to understand for maintenance pur-

poses and structured coding itself is a recognized techniquu

for modifying existing software (Reference 4).

e. Standards Enforcer or Auditor

A standards enforcer is a computer program used to

automatically determine whether prescribed programming standards

and practices for a specific program language have been followed.

3-9

Standards that can be checked for violations are program size,

comments, structure, etc. The use of a standards enforcer "contri-

butes directly toward the program's understandability and main-

tainability" (Reference 24).

f. Code Comparator

A comparator is used to compare two versions of the

same computer program to establish identical configurations or

to specifically identify changes in the source coding between

the two versions (Reference 22) . Boehm (Reference 4) mentions com-

parator programs as a tool for revalidating modified software.

The use of a comparator can limit the scope of reverification that

has to be performed on programs that have been modified9.

g. Optimizer

An optimizer is used to improve processing efficiency

by modifying code within individual modules or possibly the

structure of the complete system. Optimization, in itself, is

sometimes considered to be one form of system maintenance (Ref-

erence 12). Execution analysis tools characteristically provide

valuable data for determining optimization requirements; however,

an entry is shown in the "optimizer" column of the Tools and

Techniques Applications matrix only when the optimization function

was specifically mentioned in the literature.

h. Utilities and Programming Support Tools

Utilities are computer programs employed to provide

special services such as preparing card listings, creating load

tapes, sorting, and plotting output results. The use of proven

generalized programs reduces the probability of introducing new

errors during maintenance. However, specially written utilities

often reflect unique requirements and are redeveloped for every

new application.

Programming Support Tools include compilers, assemblers,

macro processors, linkage editors, loaders, etc., which are usually

vendor-supplied.

3-10

When the use of a technology in this general category

has been specifically mentioned in the literature concerning

a tool or technique, the specific technology will be listed in

the Tools and Techniques Applications Matrix.

i. Automatic Modification

This technology refers to methods for automatically

changing a program and/or constructing different realizations

of the same program.

j. Code Reading/Review

This technology refers to methods for reviewing program

code, such as desk checking, structured walkthroughs and the I
reading of one programmer's code by another programmer. These

techniques are an important complement to the use of automated

tools in program maintenance.

k. Debug Tools

Debug tools are widely available, state-of-the-art

tools for use in error isolation and determining the cause of

errors. A complete range of debug tools are commonly available

as vendor-supplied software. Finfer (Reference 25) states "there

appears to be no new or unique (software) debugging tool concepts

within the past 10-12 years" but "there is an estimated 10-year

gap in the level of sophistication between the software support

offered by manufacturers of large scale machines and that offered

for minicomputers, a similar gap separates mini and microcomputers."

Debug tools specifically mentioned in the individual tech-

nology descriptions are named in the "debug tools" column of the

Tools and Technology Applications Matrix. Standard debug tools

useful in the maintenance phase include:

(1) Cross-Reference Program

The cross-reference generates information on system

components in relation to other programs, macros, parameter names,

etc. and provides a static description of data access. In addition

to their debug function, cross-references are useful in assessing

the impact of program changes. In the Tools and Techniques Appli-

cations Matrix, cross-reference which identify data relationships

are shown as "'variables analyzers" and those identifying module

relationships are shown as "interface checkerc."

(2) Editor

The editor analyzes source programs for coding

errors and extracts information that can be used for checking

relationships between sections of code.

(3) Dumps/Displays

Dumps provide program/system status and selected

data values as requested by the user. Dump/display techniques

include:

" Post-mortem dumps which provide the static
state of the instructions and data at a
particular point in time when the program
is not executing.

* Snapshot dumps which provide the dynamic
state of data values while the program is
executing.

" Breakpoint dumps which display the requested
data when a certain location or condition
is met.

* Programmed-in dumps which provide the dynamic
state of data items as requested in print
statements coded by the programmer.

Zelkowitz (Reference 5) points out that standard dumps are not

very effective debug tools because they provide much data with

little or no interpretation.

(4) Traces

Traces display state information based on the se-

quence of program operation during execution. Traces show the

step-by-step operations of the execution, including traversed

paths, transfers of control and selected memory contents.

3-12

(5), Computer Emulator

An emulator is programmed to interpretively exe-

cute the instruction set of the target computer on a host com-

puter, enabling the execution of programs written for another

system.

(6) Computer/Device Simulators

A simulator is programmed to simulate the target

computer's instruction execution, the interfacing computers in

a network system, terminals, or the functions of peripheral

equipment. The simulator provides the system with inputs or

responses that resemble those of the device being simulated.

Simulation of microarchitecture on a host machine is a technique

used in applying debug tools to microprograms.

(7) Breakpoint/Traps

These features are associated with the inter-

ruption of a program's execution for the initiation of a debug

activity. Breakpoints are interruptions generated 4hen cer-

tain program locations or statements are reached. Traps are

interruptions generated when specific conditions are met, regard-

less of the location within the program.

(8) Checkpoint/Restart or Save/Restore

These tools allow the capability to save an image

of execution status at any point during program operation. The

saved data may subsequently be reloaded/restored to initiate

processing from the checkpoint position.

(9) Interactive Modification

These tools provide a means for dynamically altering

program states such as memory locations, data content, program

instructions and execution flow. Interactive debugging systems

represent a major advance in debugging methodology for program

development; however, unless the system is specifically designed

with interactive debugging facilities (See automatic recovery,

3-13

3.3.2.2.d), most problems encountered in the operational system

must be debugged using post-mortem data or special runs recon-
structed to display errors in the interactive environment.

(10) Graphic Output

Graphic display can be used to present decom-

posed versions of the softwa 're which can simplify the under-

standing of the program logic or graph-like lists can be produced

on the printer.

3.3.2.5 Verification and Validation

a. Static Analysis

Static analysis is a technique for examining fhe program

source code and analyzing the program structure without actually

executing the code. Various types of static analyzers are listed

separately in the Tools and Techniques Applications Matrix in

order to identify the specific static analysis performed by each

individual tool or technique. Static analysis can be applied

to error isolation, program revalidation, documentation and I
redesign analysis in the maintenance phase. Yau and Collofello

(Reference 12) note that "a complete static analysis of the imple-

mented program is necessary for a more precise prediction of

performance changes resulting from software modification."

b. Path Structure Analyzer

Path structure analyzers are computer' programs used

to examine source code and identify the program paths and control

flow. Structural flaws, such as improper loop nesting, may also

be identified during the analysis. Directed graph analysis is a

commonly used technique for path analysis, with the nodes

representing statements or sequences of statements and the edges

representing program flow of control.

C. Anomaly Detector

Anomaly detectors search the program source code for

syntactically correct but logically suspicious constructs which

3-14

are likely to cause problems when the program is executed. The

detection programs identify potential error conditions not

normally detected by compilers, such as the referencing of un-

initialized variables.

d. Variables Analyzer

A variables analyzer is a tool or technique which deter-

mines the nature of the data structure or data flow of a program.

A static variables analyzer provides information concerning the

definition and use of the individual variables in the program. A

dynamic variables analyzer provides information concerning the

actual values of variables, such as maximum and minimum values,

during execution of the program.

e. Interface Checker

Interface checkers are static analysis programs used

to automatically identify program interfaces (such as called

and calling modules or modules involved in interprocess com-

munications) and to check the range and limits of the module

parameters. Interface checkers are valuable tools for analyzing

the impact of one module's modifications on other modules and

for identifying the use of data abstractions (from subroutine

calls, function calls and macros) for redesign analysis.

f. Reachability Analyzer

Reachability analyzers identify the specific program

paths exercised in order to reach a specific module, subroutine

or section of code within a system and may also identify un-

reachable modules and "dead" code.

g. Symbolic Execution/Evaluation

Symbolic execution of a program is carried out by

assigning dummy symbolic values rather than actual numeric

values to all or some of the input variables of a program. It

provides a capability to express paths in terms of all necessary

conditions to be satisfied in selecting the path. The output

of the symbolic exEcution, in its simplest form, is a formula

which describes the program path and the computations used to

derive the output value. The results may also be used to develop

a minimum set of test cases. At the present timne, symbolic

execution techniques are being used experimentally in software

research. Some characteristics of symbolic execution potentially

applicable to the maintenance phase are:

* The evaluation of program paths assists the user
to understand a program when the actions of the
program are not immediately obvious from casual
reading.

" Isolation of paths or modules provides the capa-
bility for user analysis before and after program
modification. Trhe entire program may also be
evaluated before and after modifications to ensure
that unmodified paths have not been affected.

" One symbolic execution may verify the program
over a large subset of the input domain, en-
compassing a potentially infinite number of test
runs with different input values.

A disadvantage of the symbolic execution technique is that

the output symbolic representations can be very complex and may

be too long to be meaningful.

h. Proof of Correctness

Proof of correctness refers to the techniques of proving

programs are correct by means similar to those used in proving

mathematical theorems. The axioms and theorems derived are used

to establish the validity of program assertions; that is, that

the program implementation satisfies the program specification.

Research is being pursued in several approaches to correctness

proving. However, Reifer and Trattner (Reference 22) observe

that the proof of correctness approach will probably not be used

operationally until automated aids are perfected which generate

the verification conditions, do proof checking, formula simpli-

fication and editing, or interactively generate symbol trans-

formations.

3-16

1. Assertion Checker

Assertion checking techniques allow the programmer

to express his validation requirements in a way that reflects

the program's intended function. Assertions concerning the

value or condition of program variables are inserted at various

points in the program code. The assertion checker program comn-

pares the assertions with the results derived by symbolic or

dynamic analysis of the program.

The assertion checking technique addresses understanding

the program behavior rather than proving mathematical properties.

A side effect of assertion checking is the documentation of the

program's critical requirements as stated by the assertions.

This documentation enhances the understandability and maintain-

ability of the program.

Assertion checking may also be applied to error detec-

tion activities, for example, dynamically checking critical

parameters for range, value, and order violations based on the

prescribed bounds of the assertions. As an error isolation method-

ology, assertion checking "is seen (Reference 25) to work best

with well-constructed software, given an experienced analyst,

and a feasible application problem in an accepted computing

environment."

j. Dynamic Analysis r

Dynamic analysis is a technique for monitoring the

behavior of a program at run time and is dependent on the input

data used to exercise the program. If the execution history

is stored on a data base, a backtracking capability may also

be provided. Various types of dynamic analyzers (such as path

flow analyzers and execution analyzers) are listed separately

in the Tools and Techniques Application Matrix so that the spe-

cific dynamic analysis performed by each tool or technique can

be readily identified. Dynamic analysis is an important tool

3-17

for error isolation, redesign analysis, optimization and modi-
fication validation/testing in the maintenance phase and is
useful in developing regression testing strategies.

k. Execution Analyzer (Software Probes)

Execution analyzers instrument the source code by gen-

erating and inserting counters at strategic points to provide

measures of test effectiveness. Their basic function is to gather

run time statistics, such as execution times and counts, which

give insight into program behavior. Most of the tools provide

a control language that allows the user to communicate with the

tool and to instrument only selected code segments or options.

A disadvantage of execution analyzers is that additional computer

core and execution time is required for their use.

Timing analyzers and usage counters are listed as

separate categories so that the type of execution analysis per-

formed by the individuial tool or technique can be easily iden-

tified from the Tools and Techniques Applications Matrix.

1. Path Flow Analyzer

A path flow analyzer records program paths followed

througn test executions and may also force execution of branches

to determine program flow. This technique is suitable for de-

tecting sequencing and control errors.

M. Timing Analyzer

Timing analyzers record the actual timing data related

to program test execution, such as total execution time, time

spent in each module, function, routine, subroutine, etc.

n. Usage Counter

Usage counters count the number of times that state-

ments, modules, etc. are exercised during a test execution.

Heavily used code is a candidate for manual optimization and

chronically unexecuted code is often symptomatic of program logic

3-18

errors (Reference 26). The measurements are also useful for

balancing test cases and detecting unexpected program path use

(Reference 20).

o. Interactive Execution

During interactive execution, the user monitors the

test/validation run from an interactive terminal and may select

program paths (branches) or assign values to variables at various

points in the program.

3.3.2.6 Testing and Integration

a. Test Procedure Language

A test procedure language is used to specify formal

executable test cases to be applied to a program or program

module. The language provides a basis for standardizing test

specifications, documenting test activities and analyzing re-

gression tests.

b. Test Data Generation

Test data generators produce test data to exercise

the target program. The purpose is to relieve the user of the

tedium of manually generating a large volume of data. The data

may be created using statistical algorithms, random number gen-

erators, or test scenarios input by the user. The test data is

generated in the format required by the program to be tested.

Tools which attempt to generate sample test data by

program path analysis are shown in the Tools and Techniques

Applications matrix as aids to test data generation. The test

data must be augmented by test data prepared by the user. The *
advantage of these tools is that the data is unbiased and may

initiate the testing of program paths previously overlooked.

C. Test Case Selection

The usual goal of the test case selectors which are

based on control structure analysis is to exercise all state-

ments and/or all branches in a program. Techniques for selecting

3-19

1 ('111 etiat i Ve !-Iiiip o ofI te-'t ca,;en (ot pt o(qlilt pat iI, alt hoe

I lit, Ill., i: d . iitt pla t lit, ob ' oct i vt' i :- t o it' t eI In li Ino t hie nit i Iti itim

(IeI ect j onl of ttt 0ae, to0nt t h At Mod itI i c.t i on'; a I (ct. iec t

anid t hilt t liew 01t 1 t', iv 111 o 1t)t'01ii Tint I OdLICl

d ('olifipt M on Anai 1~I

C'omip] et i oil alia I y'Zein, prcoV i de dat a t hat lnhown hlow

tIhol imIoh I y I he oii ce -ode un~l eon~l et'F i -wd d1i niq I. Ile t est 1 11(i

Ii itIe I it i ()fl t o t t t ('nIt i niq koa I t hat have beenl Set.

e S t lib!

ot ilh:n ai e uined inl top-down (level opmlent to repren-ent

JpIOL1hdiii mo1d iiie' oI (,I elliln I !;tail t have not Yet be coded. 1In

t heoh) ec I py oki '1am , t he n-, i b's It isn I y t he coit ro 0 pas'sn i fliq f Itie -

tn de)i c t ed ill thei(t it ered litt , IrIchIIy anitd Illiay a Inso ModeI t he(

(toli n uni pt ioil of corni pi. I e (I Ie no ii!.m c'; licli a., Iiellil y l- pace and

pl ocenn-o t i mle. 1n it lie, iiial i oll'nlie plane , !-t lti;- canl be usmed

t o .1d1 - lid t e7. !;i t ('t tN liett ('I I ace t tt new mlodu I te! or ioktiraIn

n;ekliieii t :. bet 01 (I cod i IM o f t lie, mlod it I enIn coil e t 0

let I i I I ' niiaq('i, I- itO ine;d t 0 Ltipdaite ad~ flol i tot t o.-;t

killt a andk a I I ow e a!ny im 11iill~ I a t i onl of I en ri a'1(t ed t en t1 t i I eIn . Thesne

t oolI a re par11t i cill at 1 y uneof ill in1 ten st i niq snyn t (ll thla t a re dta t .

ban d i yen (Rofe e nce,. 24

AuIIt oiliadt i c. 1) 1 i vt'!

Alttoll~it i C ti'i Vt0'1 ai 1' tined to 0 'unl ten St s in a1 conro led V

mannerM t ti Ic udk i nq .- nuLik1t ILInICt j on,; A t ; i t i A t j MI inIput t f -o11I I S, t

I i I en;, kcl I I i appI r1opr 1 i ate(procenn; i nq(mlodu l es andi Mon i t otri nq

proce!n,; i nqt t i Ilit'!; ThIle compa I i -,onl of t I ent rentIl 1 t :n tc pr edet erIm i n od

Ienn11I t , 'And Iten!;t nt at itn reopo rt i MI di'0 (-IIe oet il men i n tiIIde(-d an ad -

di It i oil I untIt i onl, of t Ie dI e I AuLit omatc dIi iverI I I(II i t at e

teI ; teopet i tI)I il; (litI i nio t eq reo,!; ionil t el;t i nol and ate ue Ill int

teva I il at in mi loduleI (i lit' vI t .ct'!; l te r i ogram mil od itf i cat i oitin ott t he

add i t i oti of new iiiodiu It'

1 -20

h. Output Processor/Analyzer

The test output processor is used to perform test output

data reduction, formatting and printing. Test output analyzers

perform a statistical analysis of the output or compare the test

output to a predetermined set of values.

i. Test Status Reporting

Test status reporting includes management information

such as identification of test cases, counts of test runs per

case, number of successful runs, degree of test coverage achieved,
etc.

j. Test Bed (Environment Simulator)

A software test bed is a computer program that simulates

actual hardware and interfaces, independently from the application

system, permitting evaluation of hardware/software interfaces,
control of input/output, analysis of actual timing character-

istics, and full test repeatability. The input data is usually

precalculated and can be re-used any number of times.

The technique is applicable to adaptive maintenance

and the central maintenance of systems which are operational

in more than one environment.

k. Simulator (Function Simulator)

A simulator is a comiputerized model of a system (or

process) used to conduct experiments for the purpose of under-

standing the behavior of the system or evaluating alternative

strategies for operation of the system. The technique is used

to study specific system characteristics, including performance,

capabilities and constraints, over a period of time under a

variety of conditions. Simulators are usually highly special-

ized and applicable only to the system for which they were de-

veloped (Reference 24) and may become expensive in terms of man-

power and computer time (Reference 27).

3-21

Simulation techniques can be used during the mainte-
nance phase to evaluate the effects of changes. These techniques

help isolate some of the errors introduced during the change

process and their side effects. Simulations can also be used

to help predict how the system will react to modified config-

urations and alternative loads.

1. Regression Testing

Regression testing (retesting after a change) is an

essential activity in the maintenance phase of the life cycle

and poses a significant problem because of the high cost of re-

testing the entire software system (Reference 12) . For this

reason, regression testing is categorized separately in this

report and tools and techniques which specifically adfress any

aspect of regression testing can be immediately identified

from the Tools and Techniques Applications matrix.

3.3.2.7 Documentation

a. Documentation Aid

For this report, techniques that assist in the docu-

mentation process (according to statements by the user or devel-

oper) but do not actually produce documentation are categorized

as documentation aids.

b. Automatic Documenter

Munson (Reference 1) states "one of the current problems

with post-delivery maintenance of software is the quality of the

documentation." Automatic, usable documentation for future main-

tenance is a very important maintenance tool. For this report,

techniques that produce reports or listings which are usable as

documentation without any further revision (according to the user
or developer) are classified as automatic documenters. The refer-

enced documentation may be a formal deliverable or an item recom-

mended for inclusion in a "maintenance" workbook for reference in

future modification/maintenance activities.

3-22

Static analysis tools characteristically produce docu-

mentation useful to program maintenance; however, entries are

shown in the "documenter" column of the Tools and Maintenance

Applications Matrix only when the documentation function of the

tool was specifically mentioned in the literature.

3-23

SECTION IV

MAINTENANCE TOOLS AND TECHNIQUES

4.1 TOOLS/TECHNIQUES APPLICATIONS MATRIX

The Tools and Techniques Applications Matrix, Figure 4-1,

summarizes the literature survey conducted for this report and

shows the specific maintenance applications of each tool or tech-

nique. Techniques are defined as practices and procedures used

in the development and maintenance of software systems. Tools

are defined as computer programs which perform tasks which would

be tedious or impractical to do manually. The individual tools

or techniques shown in the rows of the matrix are described in

detail in paragraph 4.2.

The columns of the matrix identify the maintenance appli-

cations of the tool or technique as specified in the literature.

An entry of "U"l indicates that this application of the tool or

technique was discussed in the literature. The primary appli-

cation of the tool or technique is identified with an asterisk

().An entry of "M" indicates that the application was

mentioned in reference to program modifications or software

maintenance. General applications such as "static analysis" are

shown for easy identification, as well as the specific appli-

cation, such as "interface checker." An entry of "R" indicates

that the user or developer has recommended that the tool or

technique be expanded to include this application. An entry of

"E" indicates that this application is partially implemented or

experimental. An entry of "T" shows that the user or developer

tried this application of the tool or technique but was not

satisfied with the results. An entry of "A" shows that the tool

or technique aids the user in performing the application manually

but does not provide complete support for the application.

The additional applications that are possible for any given

maintenance technology are shown in the Maintenance Technology/

Activity Correlation Matrix, Figure 3-2. For example, a tool may

4-1

CONTROL TORING/IVALUATION RIOSI(,k ([U[PROJD(TION AND ANALYSIS

SOURCE LANGUAGE/ tt C a
SYSTEM a a a 4 t

PROPaOa a

MAINTENANCE

TOOLSTRAN

AT EXRMED L

4.2.28 TRW UNOVT 1
COPONTSOPEIIEYPEm m
BIENG E NEATV
DEVELPED

4.0 .3 0(U.o COF

MASS. RESARCH FORTRAN

ATD TRW EXEIMNA aNVA 1110

.2.19 PROTOTYPEFORTR

4..3 ORTY IMPLEMENTED INEATV
ATTESN CLARK EXP E R

MENTAL LANSIi

4.2.3 (u. OF RESARC FORTRAN a

ATENC RAA PRTTP FORaTRA-

C- C RACC (MULTIPLE COBOL U C
SITES)

DATPLOW :ALL EN OPERATIONAL FORTRAN

4.2.39CDC CFORTRAN

DAVE UNIV. OF PROTOTYPE4.2.20 COLOMRAO OBm

CDC

PAT'LROPOSED UNSI
DISSECT BUREAU IOESE- ATR
4.2.4 FORTRAN

STANDARDS TOOL PP-10

EXPERI- Pl.IEFFIGY KING MENTAL SUBSET R T
4.2.1 (o) RESEARCH FORTRATOOL IBM 370 BREW

CAI E RAI PROTOTYPE - -I J

U(U.ED) - THE TOOL OR TECHIE USES (MAINT!NANCE) -AN APPLICATIO To R(RCOMMFNDED) THE USER OR EVELOPNR ERIED AND RAIS(.ARDD) -HE USER O E(E
THIS TSCHNOLOGY THE MINTENANCE PHASE IS RECOMMEN4S OR PLANS THE DEVELOPER TRIED THIS APPLI-

FMENTIED IN THE LITERATURE EXPANSION Of THE TOOL O CATION Of THE LAOL NG A[H-
TE SP Y FUNCTION TECHNIQU O INCUDI THIS NIQU[BUT WAS NOT SAOP R TIIO

SITES)TECHNOLOGY WITH THE RSTS

CODL PIDLICTION AND ANALYSIS VERIFICATION AND VALIDATION TESTING AND INTEGRATION DOCUMENTATION

cwe

' IU U UU

M M M M

I U A u*J-

U U Ui U. U

U LJ*

S u

LaaIu a a
....O- aI-.

C) - ~ U' at La La a I t 0 a C Z -

M M

I r LU T U T A TEST

~DOC_

'- ci La .a a ' a m C, 0- - a- a O 0

R TRACE, SAVE, U UE U RBREAKPOINT I I I I I a I L

TTRI AND DISCARDED) THE USER OR E(EXPERIMENTAL) -THIS APPLICATION OF S(STANDARD) -WHEN REFERRING TO THIS TECHNOLOGY A(AID) THIS APPLICATION IS NOY AUTO-

DEVELOPER TRIED THIS APPLI- THE TOOL OR TECHNIQUE IS (EITHER 'UTILITIES' OR =DEBUG TOOLS*). M'ATED IN ITSELF, BUY THE
CATION OF THE TOOL OR TECH- PARTIALLY OR EXPERIMENTALLY SUCH TERMS AS "THE STANDARD SET" OR TOOL OR TECHNIQUE{ PROVIDES
41 DUE BUf WAS NOT SATISFIED IMPLEMENTED "THE USUAL ARRAY" WERE USED IN THE INFORMTION TO ASSIST THE
WITH THE RESULTS SOURCE ARTICLE. (SEE PARAI. 3.3.2 FOR USER IN PERFORMING THE

FURTHER DEF IN ITION) APPL ICAT ION M&NU k Y

Figure 4-1. Maintenance Tool &

Techniques Applications
Matrix

a a4 4 - 3

iiU U iU {
H H Hl

APPLICATIOS CONFIGURATION OPERATIONS ,ONI- REDESIGN Ebb[PRDDUClION AND ANALYSIS
CONTROL TORING/EVALUATION R[R-AA

SOURCE STATUS LANGUAGE/ ,
,

SYSTEM r . I

MAINTENANCE _________ ~I m

FORTRAN

FACES UNIVAC 1108 CROSS

4.2.31 R JAAOORT HY OPERATIONAL CDC 6400 PET
IBM 360/65

ASSEMBLER
FA EBUG-I OPERATIONAL LANGUAGED F U I T S U(B E I N G

4.2.14 LTD. EXTENDED) FACOM O
230-60

ME THODOL OGY
]

FAST BROWNE PROPOSED FORTRAN
4.2N AND

4.2.279O ARC PERA N INTRATIV

JOHNSON PROTOTYPEIMPLEMENTED

FAVS FORTRAN COGPAOH!
OUTPIJ

4.2.A RADC OPERATIONAL F NA,[. CROSS-HIS 6180
ir

FORAN FORTRAN (P])LSS

4..9 ARC OP[RAT TONAt CDC 400 1[

FORTRAN CODE
AUDITOR RADC/TRW OPE RATITONAL FORTRANA

4.2.8 HIS 600/6000

FORTRAN CAINE.
STRUCTURING FARBER OORTRAN

E.2.?E ION, IBM 360/370
ENGINE GORDON. OPERATIONAL I .. '
4.2.22 INC. B 30/ 0, !

ISMS EXPERIMENTAL AL Oi 60

4.2.35 FAIRtEY IMPLEMENTATION FORTRAN

JARS OPERATIONAL JOVIAt (J3) hiWA tlRAPW

4,2.5 RADC/GRC (MULTIPLE HIS 6180 A ,;'! ', CRO
SITES) COC 6400 II Ci NLc,

JOYCE FORTRAN RO[ICA SS

4.2.25 MDAC OPERATIONAL CDC | IlI

U(USEO) - THE TOOL OR TECHNIO(CE USES M (MAINTENANCE) - AN APPC ATION TO p(RI OMMFNmI)) 1HICA t CX P OR 1' Vi i; k 1 1 !y.: A
r

. .. A l) T i Ili.], l CRI

THIS TECHNOLOGY THE MAINTENAN(E PHAS, IS RE (c"i Nt'S OR P! AN' IHi AiEk P ji , lw, AI i' I
MINIIONED IN THE t ITERATURE IXPANI"N (II TH TRI 1)) O A'ON {P H! Io', IRl 1(H

*INDICATES PRIMARY FUNCTION OF IC HNI(TO "NIl',:11 IHIS wI ' 1 % A CI

TRC HNIQ JEIOO TEhNOlOGY I TOL'

CUL PRODUL I ION AND ANALYSIS VERIFICAI ION AND VALIDATION TESTING AND INTEGRAION DOCUM[NTATION

- -q2

L~~~~it t2 r - 0 a i i

r a - - a

U U U A U

U. I) UP ROa

'AA

T'v E Ct koS Ua U 0 ai U-i a U -t;A AtAP O

P1 IMF

RE F

!

U '*

S IGRACEI GRICT U UUU

A ut a'u CR SS U a o .R- U, U U U' u-i AA

} RE fpNCI, m MMDO

.{-. - aU i o n
,

m ata*a

Dii I a 'a a - a ai4 a -L~ii. ,i * 'CROSS IR G. C

RIF a U U DOC.

-1 -TI A PAPIC Y PRD .I-- - -

Not wa 4(, ;TI I U P T IR SS I) [IN [I M M N iTH US ADRA 'W REU EO(.ETO A S S 11USR I I I -

- I I.

WITH , SoRC ARTICLE (SEE PARA. 3.3.2 FOR THE APPLICATION MANUUIUAY

FURTHE R DE-FINITIION)

Figure 4-1. Maintenance Tool

Techniqlues Appl icat ions
Matrix (Continued)

4 -

-I-U Ut II I U I U L I U L IIi l 1 IIr - =

APPLICATIONS CONFIGURATION OPERATIONS MONI-

CONTROL IORING/EVALtATI)N RIr[SC, C iY Pk'TJCT oE ANI ANALSIS

o 11
LANGUAGE/ i

SOURCE STATUS SASE , ina

A PP L I C A T. I-- ON

SYST- EM a

.4 Li a, r 0Z L i-a a.5
-A I 'T E 'A Ct aE

MAINTENANCEa 44 0 .,-r i . C iC

TOOLS AND
C , "C

TECHNIQUES - a, 5 i c L

4.BRAR40NADR OPERATIONAL IBM 360/70 EDITOR
4.2.40 H H

PPU U"
.PP VARIOUS OPERATIONAL VARIOUS

4.2.10 M M

NUMERICAL
SOFTWARE HENNELL OPERATIONAL ALU
TESTBED ET AL ALGOL
4.2.37 . .

OPTIMIZER I1 CAPEX OPERATIONAL COBOLU

4.2.32 IBM 360/370

FORTRAN

PACE TRW OPERATIONAL CDC 7600 A

4 2.23 CDC 6500

UNIVAC 1108

PERFORMANCE/ LARGE U U U

MAINTENANCE YAU & BEING SCAL[
ALGORITHMS COLLOFELLO DEVELOPED SYSTEMS M M M

4.2.12

FORTRAN

PET MDAC OPERATIONAL IBM, CDC,
HONEYWELL,

UNIVAC
FORTRAN .

PFORT CROSS
VERIFIER BILL OPERATIONAL IBM. CDC,
4.2.21 LABS HONEYWELL, REF

BURROUGHS,
OTHERS

BOOLE £ LANGUAGE
"PE BABBAGE, OPERATIONAL INDEPENDENT
4.2.17 INC. IBM H M

RELIABILITY MOST LARGE U.

MEASUREMENT BSJSA
1

No)0L (BELL LABS) OPERATIONAL COMPUTER

4.2.30 SYSTEMS N

U(USEO) - THE TOOl. OR TECHNIQUE USES M(MAINTENACE) - AN AP'LICATION TO R(RECOMMENDED) - THE USER OR DEVELOPER T(TRIED AND DISCARDED) - THE USER OR E(EXPERIME

THIS TECHNOLOGY THE MAINTENANCE PHASE IS RECOMMENDS OR PLANS THE DEV[LOPER TRIED THIS APPLI-
MENTIONED IN THE LITERATURE EXPANSION OF THE TOOL OR CATION Of THE TOOL OR TECH-

TECHNIQUE TO INCLUDE THIS NIQUE BUT WAS NOT SATIS;)ED

*INDICATES PRIMARY FUNCTION OF TECHNOLOGY WITH THE RESULTS

TECHNIQUE/TOOL

A% AN .v''IS VERIFICATIJ(A A AND VAI 1I)ON ESTIN5 A' i6R IAI)O DOCOINAI)ON

....a2 -"- 1 d
II ORa

M U

U U U U U U A

S A A

U U U U U * U a aA Ac

CCROSS I O

REF L1DOC.

C a a -I

,' C-' aI - , C

N U

tA,,D) T. - THE USER OR fEXPERIMENTAL) - THIS APPLICATION OF THE S(STANDARD) -WHEN REFERRING TO THIS TECHNOLOGY AAID) -THIS APPLICAT1ON IS NOT AUTOAID
NPRTRIED THIS APPL I- T00L OR TECHNIQUE IS PARTIALLY (EITHER "UTILITIES" OR 'DEBUG TOOLS'). IN ITSELF, BUT THE TOOL OR TECH-OF THE TOOL OR TECM- OR EXPERIMENTALLY IMPLEMENTED SUCH TERMS AS *THE STANDARD SET' OR NIQUE PROVIDES INFORMATION TO o

1PT WAS NOT SAT ISE 1 "THE USUAL ARRAY* WERE USED 114 THE[ASSIST THE USER IN PERFORMING1,W RESULTS SOURCE ARTICLE. (SEE PARA. 3.3.2 FOR THE APPICATION MANUALLY

FURTHER DEFINITION)

Figure 4-1. Maintenance Tool &

Techniques Applications
Matrix (Continued)

-4-7

A

APPLICATIONS CONFIGURATION OPERATIONS MONI-

CONTROL IORING/EVALUATION REDESIGN CODE PRODUCTION AND ANALYSIS

SOURCE STATUS LANGUAGE/ow "
SYSTEM

MAINTENANCE C> n,
OOTS AND

O - nECj .I Li t C .J 0 a LAC05a~il iTECHNIQUES
FORTRA

I c-

IFOTRAN SXVP
GRC OPERATITONAL

CROSS

.2.24
CDC. IBM,

-
REF

UNIVAC,
OTHERS

PARTIALLY
OPERATITONAL

SEF
NAVAL AIR

S S(MODTST) IRVINE & EE.NOT
U.*4..|6BACET CENTER SPECIFlED

R R(BEINGEXTENDED)

00
--

SELECT BOYER EXPERIMENTAL
4.2.2 ET AL RESEARCH 1SP(SRIO) TOOL SUBSET

SEMANTIC UPDATE H IRSCHBERG, PROTOTYPE FORTRAN U U UA'SYSTEN LT AL BEING4.2.26 DEVELOPED LARGE -SCALE M M MM

SPTRAN ELL IOTT OP E A T ONA FORT RAN
4.2.15 (HONEYWELL) OEAINL PORTABLEu

STRUCTRAN

FORTRAN

z

RADC OPERATIONAL UNIVAC IB108

CR
4.2.6 H IS 600/6000 SlCTA

SYSTEM YAU ,
U I1. uUUMONITOR CHEUNG, AND EXPERIMENTAL NOT SPEC IF IEDM

I NTE :RACTI V4.2.29 COCHRANE M M mM

TESTING SYSTEM HNYEL PROTOTYPE HONEYWELL
DMPS

4.Z.34 ONYLL IMPLEMENTED OS

TPt/F
SYS TEM PANEL OPERAT IONAL FORTRAN4.2.38

R
RNSFORMATIONS

BO
EXPERIMENTAL

I
4.2.36 AIMPLEMENTATI

ON VARIOUS

U

U (U S ED) - T H E TOO L O R T EC H N IQ U E U S E S M (M A IN T IN A N C E) - A N A P PL IC A T IO TO R (R E C O 'ME ND E D) T H E U S E R O R D V LO P E R T (TR IE t A10 D ISC A R D [D) T H I IS . O R E kl X P E R I MZ

THIS UTENAPRO
TOTE MA RTLANS

THE LVFLOPER TPUD THIS APPI I-
MENTIONED IN THE LITERATURE EXPANSION OF THE TOOL OR CATIRAN OF TH TOOL OR 1,H-

*INICATES PRIMARY FUNCTION OF
TECHNIQUE TO INCLUDE TOHPS NEREC BIlV WAS NOT A]F ILD

TECHNI(QUE/TOOL

TECHNOLOGY
WITH THE REESTL S

M
Ih

I

W PRDUCTION AND ANALYSIS VERIFICATION AND VALIDATION TESTING AND INTEGRATION DOCUMENTATION

U RF1S U U U U U IU U IAU U11 U U

PETJ

R R R M M M

a a - E

A COU U U U

M M

5 I ROG

(STPIUCTRAN 1)

U U

M INTERACTIVEi i!

U. U VR

DUMPS U U U A R (TEST

U U U U U U. U U t

_ARCE-D)) THE USER OR E(EXPER[MENTAL) THIS APPLICATION OF THE S(STANOARO) -WHEN REFERRING TO THIS TECHNOLOGY A(AID) -THIS APPLICATION IS NOT AUIrMATEU)OPIR TRIED THIS APPLI- TOOL OR TECHNIQUE IS PARTIALLY (EITHER "UTILITIES" OR "DEBUG TOOLS). IN IISILF, BUT TH TOOL OR CH

, OF *4E TOOL OP TFECH- OR EXPERIMENTALLY IMPLEMENTED SUCH TERMS AS "THE STANDARD SET" OR NIQUI PROVIDES INFORMATION 10
_BUT WAS NOT SATISFIED "THE USUAL ARRAY" WERE USED IN THE ASSISI]HE USfR IN PERFORMI't,
tM1 RESULTS SOURCE ARTICLE. (SEE PARA. 3.3.2 FOR THE APPLICATION MANUALLY

FURTHER DEFINITION)

Figure 4-1. Maintenance Tool
Techniques Application
Matrix (Continued)

.- ___ _ . ..9

be shown in the Applications Matrix with a "U" in the "static

analysis" column but no entry in the "redesign analysis" column,

because the literature did not address the redesign application

of the tool. The Technology/Activity Matrix shows that static

analyses tools are also applicable to the redesign activity.

4.2 TOOL/TECHNIQUES DESCRIPTIONS

4.2.1 EFFIGY

a. Category - Verification and Validation Tool

o Interactive Symbolic Execution - with normal
execution as a special case

o Standard Interactive Debug Tools (including
trace, breakpoints, and state saving)

o Path Structure Analyzer

oStatic Analysis

oAssertion Checker

eProof of Correctness

* Interactive Execution

b. Sources

(1) King, J. C., "A New Approach to Program Testing",

Proceedings International Conference on Reliable Software, Los

Angeles, CA, April 1975, pp 228-233.

(2) King, J. C., "Symbolic Execution and Program Testing",

Communications of the ACM, Volume 19, Number 7, July 1976, pp

385-394.

c. Status

EFFIGY is an experimental system which has been under

development at IBM since 1973. The system is limited in practical

use but, as a research tool, it has given considerable insight

into the concepts of symbolic execution and its varied applica-

tions, including proving the correctness of programs.

EFFIGY applies to programs written in a simple PL/I style

* programming language that is restricted to integer valued variables

4-11

.I X+tt f t .\ tlt ' lt f :: t i~ I tt 1 ,1;: 1 tht ;;!*°Okt 1'l f1 1 .11 ' ; A I I F F"

Ill, ' I I Il k'1 It I I IIII I k I I, I~ | ' it I I't t I , II t I I t , I :. .; I' 1 IN-

I I Itli +.' t I tiM " t ,fi; I' t It, fltll |ct i t I. 1 1: \ k"NV tk cI

I:;(,

I Ic 11 1

01' 1I. ti) o cIl kl , tt .I 'J O o :I(h

:Ah I tI : c li.cilt t'llt 1 :; .t1 ho~ : t't co.' i ' : 1\lit.. 1. t t',.'" llt t It .

• l: .+;t t t ,'I , oht ' ' t i ,I , (' ,ttI l +' II \ 0 11 1I.t I+ I ,tit "t+; I~ ll~ l~~ t' It o t o I t I l l il +

OfIi c.iI1 c 1 .11 i i

Tho ii! I iC cIlcI f i:,t tc~i C-'t p I [ci it I ' I'c I I A.I

It't. l iY . t 1 1 I'I ,1t I t 1 Ii t :ik I t I I' ' I x t I I It'' lII

i lt 't i li"t t II i

ft I II, II II I k It: tt l : I+ I+ \ ,-It~ n t I t I t l ' .t I, t ,t l

t , l 1 } t l tit t , I lt ' 1 I II I.

I I Itk It+ ' I.. l 1 :; ' I I~ . k~ t t ~ + ,t l l ' 1111 1 11't I I ("I Nil

; tt 0 k t 'I t IfI 1 . II I I I k t 111 1 1 1 t lx 1 t IIIII t 11] , .1 1 1 ttt If t I I

II . II111 t , v .I , II t lt I t I~' t 'k I I ,, I ,I t, I I.It I , v I ,It I I'

•~~~~~ I~ ,IN tt+:i+ ttt

t; ' t ,' I1, .t I; t , I'+ IN~l ,' it~ , ' t<' t11 1 v I

used to save the state of the execution and return later to follow

the alternate paths.

A test manager is available for systematically exploring

the alternatives presented in the symbolic execution tree. The

exhaustive search, which could become an infinite process because K
of unresolvable branches, can be limited by the user to those

paths traversing less than a specified number of statements.

If the user supplies oLutput assertions, the system automatically

checks test case results against the assertions.

The program verifier generates verification conditions

from user supplied assertions in conjunction with the symbolic

execution.

An "input predicate" and an "output predicate" must

be supplied with the program, defining the "correct" behavior

of the program. The program is determined to be correct if for

all inputs which satisfy the input predicate, the results pro-

duced by the program satisfy the output predicate. Inductive

predicates must be inserted at appropriate points in the program

to reduce the proof of correctness to a finite set of finite

length paths. The ASSERT statement is used to place the predi-

cates in the program. A managerial controller enumerates the

paths and forces path choices at unresolved IF statement execu-

tions. This capability is being used for conducting research

into correctness proof techniques.

e. Research and Findings (King)

King believes that a powerful interactive debugging/

testing system combined with a symbolic execution capability

offers a natural evolutionary growth from today's systems to

achieving the systems of tomorrow. The system provides a con-

tinuing basis for further research in other forms of program

analysis, such as program proving, test case generation, and

program optimization.

4-13

4.2.2 SELECT (Symbolic Execution Language to Enable
Comprehensive Testing)

a. Category - Verification and Validation Tool

" Symbolic Execution (also normal execution)

" Static Analysis

" Path Structure Analyzer

" Assertion Checker

" Test Data Generation

b. Source

Boyer, R. S., Elspas, B., and Levitt, K. N., "SELECT-

A Formal System for Testing and Debugging Programs by Symbolic

Execution," Proceedings International Conference on Reliable

Software, Los Angeles, CA, April 1975, pp 234-245.

C. Status

SELECTr is an experimental system which has been under
development at Stanford Research Institute since 1974. The system

is similar to EFFIGY and its purpose is to assist in the formal

systematic debugging of programs.

SELECT applies to programs written in a LISP subset

that includes arrays.

d. Description

SELECT is a symbolic execution tool which is intended

to be a compromise between an automated program proving system

and ad hoc debugging practices. Experimentally, SELECT includes:

" Semantic analysis of programs

" Construction of input data constraints to cover se-
lected program paths

" Identification of (some) unfeasible program paths

" Automatic determination of actual (real number)
input data to drive the test program through se-
lected paths

* Execution (actual or symbolic) of the test program
with optimal intermediate assertions and output
asser tions

4-14

" Generation of simplified expressions for the values
of all program variables, in terms of symbolic input
values

* Path analysis for each potentially executable path
or for a user-selected subset of paths. Multiple
executions of a loop within a path are defined as
separate paths, producing a potentially infinite
number of distinct paths. The number of loop tra-
versals may be constrained by the user.

For conditions which form a system of linear equalities

and inequalities, SELECT generates a specific input data example

that will cause the associated program path to be executed in

a test run. During the path analysis, each line of code is exer-

cised for each path that includes that line of code. When a

branch point is reached, SELECT determines which of the two branch

units is satisfied by the data and execution continues along

that branch. If the alternative path is feasible, a backtrack
point is established foL further analysis of the alternative

branch. The execution and the backtracking continue until the pro-

gram exit is reached and each loop has been traversed the number

of times specified by the user.

SELECT also offers the capability of accepting user-

supplied assertions. Assertions can be used to determine the

numerical value of the symbolic data during execution, to con-

strain the input space bounds for the generation of test data

and to provide specification of the intent of the program for

verification purposes.

e. Research and Findings (Boyer, Elspas, and Levitt)

(1) SELECT appears to be a useful tool for rapidly

revealing program errors, but there is a need to expand its

manipulative powers beyond those of inequalities and algebraic

simplification.

(2) In four demonstration examples, SELECT was not

always successful in automatically generating useful test data.

For the unsuccessful cases, user interaction was required in

the form of output assertions.

4-1

(3) SELECT requires a method for handling program ab-

stractions; as a minimum, a mechanism for hierarchically handling

subroutine calls.

(4) SELECT should be expanded to detect invalid opera-

tions and conditions such as potential overflow and underflow,

division by zero, and referencing an unitialized variable.

(5) SELECT is better suited to the analysis of moderate-

sized data processing programs with numerous paths, each path

corresponding to a different case, than to the analysis of

complex, "clever" algorithms.

(6) The authors conclude that "automatic generation

of test data can be useful but certainly should not be viewed

as a total solution to the problem. A more promising method

is to incorporate user interaction in the test generation process".
However, the symbolic processing system can be used to assure

that all cases of interest are covered during the debugging activity.

4.2.3 ATTEST

a. Category - Verification and Validation Tool

" Automatic Test Data Generation

* Static Analysis

" Symbolic Execution

" Path Structure Analyzer
* Stubs

b. Sources

(1) Clarke, L. A., "Testing: Achievements and Frustra-

tions", Proceedings COMPSAC 78, Chicago, IL, November 1978, pp

310-320.

(2) Clarke, L. A., "A System to Generate Test Data

and Symbolically Execute Programs", IEEE Transactions on Soft-

ware Engineering, Volume SE-2, September 1976, pp 215-222.

(3) Chandrasekaran, B., "Test Tools: Usefulness Must

Extend to Everyday Programming Environment", Computer, Volume 12,

Number 3, March 1979, pp 102-103.

4-16

C. Status

ATTEST is an experimental system which is being devel-
oped at the University of Massachusetts. ATTEST applies to pro-

grams written in ANSI FORTRAN and can be used in the context

of top down testing.

d. Description

ATTEST is an automated aid to structural testing which

can either augment previously selected data sets or select all
the test data for a program. The major puirpose of the system

is to generate test data for unexercised sections of the code
and to create data sets (assertions) to exercise some of the

implementation dependent special cases such as an array out of

bounds and division by zero.

ATTEST automatically selects a subset of a program's

paths according to the following testing criteria:

" Executing all statements

" Executing all possible conditional branches

" Executing all loops a minimum number of times

" Executing all program paths.

Each selected path is analyzed by symbolic execution

to determine the path's computations, and the constraints for
the range of possible input values (that is, a set of equality

or inequality expressions with variables representing the input
data). Nonexecutable paths are identified.

The test generation algorithm attempts to find a solu-

tion to the set of constraints. If solution fails, the user
is shown the set of constraints for manual resolution. If the

solution succeeds, test data is generated to drive execution
down the selected path. In support of top-down testing and step-

wise refinement, the ATTEST interface description language AID
enables the user to describe both predicted and presumed relation-

ships among program variables. Specifications of unwritten

4-17

modules (stubs) can be stated by means of AID commands, and sym-

bolic execution can proceed as if the module were present. AID

has conditional execution constructs for the easy description of

conditional procedure computations in early versions of a program.

ATTEST also supports symbolic 1/O.

e. Research and Findings (Clarke)

(1) At least 80 percent of the requested path coverage

is being achieved. Other testing criteria are being explored

as well as methods for designating critical areas of code that

should receive additional consideration.

(2) Methods of incorporating further analysis of incom-

patible predicates are being investigated.

(3) Test data generation is restricted to systems of
linear predicates. Other methods for solving systems of in-

equalities are being examined.

(4) Some difficulties ini handling FORTRAN arrays and

file implementations are being researched.

4.2.4 DISSECT

a. Category - Verification and Validation Tool

" Symbolic Evaluation

" Static Analysis

" Assertion Checker

" Path Structure Analyzer (the paths are selected by
the user)

" Documenter Ca complete record of the evaluation
is provided)

" Test Data Generation (when automatic test data
generation has not been successful, the DISSECT
output can be used as a guideline for the manual
preparation of test data)

b. Sources

(1) Howden, W. E., "DISSECT - A Symbolic Evaluation

and Program Testing System", IEEE Transactions on Software Engi-

neering, Volume SE-4, Number 1, January 1978, pp 70-73.

4-18

(2) Stucki, L. G. et al., methodology for Producing

Reliable Software, McDonnell Douglas Astronautics Company, March

1976, NASA CR 144769, Two volumes.

c. Status

The DISSECT system is designed for use as a research

tool and is available from the National Bureau of Standards.

Plans for a production version depend on the results of con-
tinuing research into the effectiveness of various validation

and testing techniques.

DISSECT applies to ANSI FORTRAN programs having sequence

or line numbers. It is implemented in LISP and runs under the

PDP-10 LISP system.

The current version of DISSECT consists of 4100 lines

of LISP source code and requires user space of at least 70K 36-

bit words to run effectively.

d. Description

The DISSECT system is a symbolic evaluation tool which

allows the user to "dissect" a FORTRAN program in order to examine

the composition and computational effects of each program path.

The DISSECT Command Language is used to specify each case to
be studied. A case consists of:

" The path(s) or partial path(s) to be evaluated (the
branches to be followed)

" The symbolic or actual values to be assigned to the
input variables

" The output or sets of output to be generated.

The symbolic evaluation technique allows the validation

of a program over a large subset of the input domain in a single

execution "u". Complex programs having many paths can be di-

vided into segments and analyzed using separate cases.

DISSECT analyzes the ANSI FORTRAN program to determine:

* The computations that are carried out alonq the
selected paths

" The system of predicates; that is, the set of sym-
bolic values which cause each path to be executed

" The symbolic values of the output variables.

Options in the Command Language allow the user to specify

the exact branches to be followed within a path or to follow

all branches which do not cause the system of predicates asso-

ciated with the path to become inconsistent. Conditional commands

provide the capability to execute the command only if some speci-

fied condition is true and path traversal can be automatically

halted for unfeasible paths. Since the symbolically evaluated

system of predicates for a path describes the set of all input

values which cause the path to be executed, the output can be

used as a guideline for the manual preparation of test. data.

Similarly, the identification of the unfeasible program paths

can be used to eliminate these paths from consideration during

test data preparation.

e. Research and Findings

(1) Howden - Source (1)

(a) The interactive use of DISSECT was attempted,

requiring the user to interact with the system during execution I
whenever it was necessary to specify which branch to follow.

The results were not satisfactory, in Howden's view, because

the choices must be made more carefully and systematically than

is usually possible in interactive real time.

(b) A study was conducted to determine the ef-

fectiveness of symbolic evaluation (DISSECT) in discovering pro-

gram errors. Six programs containing 28 natural (unseeded)

errors were analyzed using various error detection techniques,

including symbolic evaluation, branch testing, and anomaly anal-

ysis. The findings were:

" DISSECT found 68 percent of the errors

* The combined use of all techniques in-
chiding DISSECT resulted in the discovery
of 3-4 percent more errors than the com-
bined use of all techniques without DISSECT.

4-20

* DISSECT alone was 10-20 percent more ef-
fective then structured testing alone;
that is, symbolic evaluation was the "natural"
error discovery technique for 10-20 percent
of the errors in the six programs.

* Automatic test data generation was not
useful in any of the six programs

9 Elimination of unfeasible paths was useful
in preparing structured tests for four
of the six programs.

(c) A major result of Howden's research is a clear

indication that no single program analysis technique should be

used to the exclusion of all others.

(d) Howden states that the distinctive feature

of DISSECT is the DISSECT Command Language, which allows the

user to describe a set of program analyses in a convenient and

efficient manner.

(2) Stticki et al - Source (2)

DISSECT was among the automated verification tools

which were evaluated under contract to the NASA Goddard Space

Flight Center (GSFC). The evaluations for DISSECT were as follows:

(a) The operating cost was evaluated at 4 in a

scale of 2! = low to 5 = high.

(b) The ease of use was evaluated at 3 in a scale

of 1 = easy to 5 = difficult.

(c) The output from the analysis of a large number

of paths was easy to read and a single examination could document

all important cases for a program.

(d) Automated generation of test data from systems

of predicates and automated proof of verification conditions

are not planned for inclusion in DISSECT because attempts to

automate these two features have not been completely successful

in specially designed test data generation and proof of correctness

systems.

4-21

(e) DISSECT was not recommended for use at GSFC

at the time of study due to programmer time required to invoke

the tool and to interpret the output in terms of program correct-

ness. However, support for continued refinement and development

was recommended.

4.2.5 JAVS (Jovial Automated Verification System)

a. Category - Testing Aid, Verification and Validation
Tool

" Test Completion Analyzer

" Test Case Selection (guideline for manual test case
selection)

" Test Data Generation (guideline for manual data
preparation)

" Dynamic Analysis

" Execution Analyzer -software probes
" Path Flow Analyzer

" Static Analysis

" Path Structure Analyzer

" Reachability Analyzer

" Interface Checker

" Optimizer (timing guidelines for manual code
opt imi zat ion)

" Assertion Checker

* Timing Analyzer

" Usage Counter

" Variables Analyzer

" Automatic Documenter (program documentation)

" Debug Tools - graphic output, trace, cross-reference,
dump, breakpoint

" Regression Testing (guidelines to modules affected
by coding changes)

b. Sources

(1) Gannon, C., "JAVS: A Jovial Automated Verification

System," Proceedings COMPSAC 1978, Chicago, IL, November 1978,

pp 539-544.

4-22

(2) Finfer, M., et al., Software Debugging Methodology,

Final Technical Report, April 1979, RADC-TR-79-57, Three volumes.

(3) Compendium of ADS Project Management Tools and

Techniques, Air Force Data Automation Agency, Gunter AFS, AL,

May 1977.

(4) TRW Systems and Space Group, NSW Feasibility Study,

Final Technical Report, February 1978, RADC-TR-78-23.

C. Status

JAVS is a workable, field-tested system for validating

and testing JOVIAL programs. The system was delivered to its

sponsor, Rome Air Development Center (RADC), in September 1975

and has since been installed at a number of government sites.

JAVS is an overlay program which operates in batch mode.

It has been installed using the GCOS, WWMCCS, and GOLETA operatina

syste-ms and the HIS 6180 and CDC 6400 computers. It executes

on the HIS 6180 at RADC in 53,000 words of primary storage.

In general, the execution of a JAVS-instrumented program requires

1.5 times the execution time of an uninstrumented program and

approximately twice the load core size.

d. Description

JAVS performs both static and dynamic analysis of modules,

programs, program segments, and decision paths. Its primary

use is to determine the extent to which JOVIAL programs have

been tested and to provide guidelines for additional test cases.

Static analysis can be performed on JOVIAL (J3) source

modules after a successful error-free compilation. Up to 250

invokable modules and an unlimited number of JOVIAL statements can

be analyzed in a single process job. The analysis includes deter-

mination of program paths (control flow) inter- and intra-module

relationships, unreachable modules, cross reference of symbols

and usage of program variables. All symbols, including module

names and loop variables, are listed in the symbol cross refer-

ence, along with an indication of where they are set, used, or

4-23

N -M I
defined. The JAVS cross reference differs from the usual cross

reference in that it can report on all modules in the JAVS data

base library or on specified single sequences. (A module can be

a program, procedure, function, CLOSE or COMPOOL.)

Instrumentation of the program with software probes r
permits dynamic analysis, determines testing coverage during

execution, and produces comprehensive reports identifying the

paths remaining to be exercised.

Execution analysis indicates which modules, decision

of times each statement was executed and the execution time (in

CP milliseconds) spent in each module.

Tracing capabilities during execution include: invoca-
tions and returns of all modules, values of variables, and

"important events", such as overlay link loading. Tracing may

be extended to the D-D (decision-to-decision) path level at the

user 's option.

Program paths leading to untested areas are identified

by means of statement numbers of all calls to the module,

the module's interaction with the rest of the system, or the state-

ments leading to a selected program segment. Test coverage re-

ports can be obtained for a single run or using the JAVS data

base, cumulatively for all runs. Reports are available by module,

by test case or by test run.

For regression testing, a JAVS report showing the inter-

action between the selected set of modules and the rest of the

system can be used to determine all modules in the system which

could be affected by the code changes.

Processing is directed by user input in the JAVS command

language. Computational directives are available to aid in data

flow analysis and checking array sizes during execution. The

directives include ASSERT to check logic expressions and EXPECT

to check the boundaries of expected variables.

4-24

JAVS provides automatic program documentation in the

form of enhanced module listings, module coitrol flow pictures,

module invocation reports and parameter lists, module interde-

pendence reports and symbol cross reference lists.

e. Research and Findings

(1) Finfer et al (Source 2) report that "JAVS is a power-

ful tool that provides the user a good deal of control over the

amount and type of debugging information produced, but it does

require the user to master a rich command language."

(2) Gannon (Source 1) notes that: the JAVS software

was path-tested and documented by JAVS. Since the tests were

performed, 12 errors in the software have been found and -or-

rected. Most of these were logic errors due to incomplete under-

standing of all possible combinations of JOVIAL constructs.

All corrections were minor and required only a few statements

to be changed.

Gannon recommends adding the following capabilities

to JAVS:

" Static Analysis

-Identification of Uninitialized Variables

-Physical-Units Consistency Checking

" Dynamic Analysis

-Automatic Generation of Certain Types of Assertions

-Coverage Measurement of Program Functions

(3) TRW researchers (Source 4) report that JAVS is

an advanced automated verification system with well-organized

documentation. However, they point out the following disad-

vantages:

0 The output of iAVS is difficult for users to ana-
lyze because of its D-D path orientation. Manual
correlation is required to interpret the results
at any other working level, such as statement
level, which may be more familiar to users.

4-25

0 The o)ver l10.1~ ~td by 1 ('Old in I C-XO'Ct2t io Ofl1)01 i -

tot ni flat A on a ma5-,5tor-aq e t race f i Ie wo) d
be urnaeeeptahb e t or the i nist Iumentait i on of -in en-)
tir m-0e11d i i III to0 1 Arf(1 e S cal s vs t enT

t MaI i lit enance !-xper i ence

(a A At t he (1e nerIa I Rescea r ch Cor pora -1t ion (GRC)

11 OW s\'nt XI111 Z, anal Om poinie t t f ,r JAV S a nd all mod iftie d i nter -

taW i nqk wet 0mn nu Vs wer sbet ed t o f ur nt ion a and st ruet ua 1

t es;ts ,I5i s-,ted, by J AV S

(I) Ma i ntenianee ot the 3 AVq so ftwa r li as been

Lireail 1 faeilit at ed by the J!AVS doeument at ion r-eports.

2)AP bai t a ALI t 011,1t i on Aq ency - qou r ce (3

RADC r epoit t t hat no ma jor- pr-obiems Were expetr--

J1 nedI i ntq t he in 11p emen t I t i onl of 3 AVS ; however* , no e xpetr i ence -

elatd kju IIt o) mi11 1t ir on1 1 its pe forae 01111C0w a s a va iIa blIe a1t th11e t imev

kthe I epor t .I t i s anti i ci paited that computer resour-ces r equ i r eci

or t e.- i 11(anId ma,1 inteac purpose10 shud ore Se ISubtant i ally .

4 . 2 .L "tR Cl,' AN I and 51'RUCI RAN 1 1

a. CIt OkI 0 1y - Codei(Pr oduIct io(-n Tool

* Pest neict r -i 1n(PIrotqrI'am

0 S t I Wt LIre (d Pi-otj r-an)) i nqI A id

* 11 r Ofl p I ,)ce,-,i0o (STRUCTRAN I

0 be u 0 1 ooIS (ST RICTRAN I)

-Pr o(r-ammled- 1n Pumps
-Recomlp i I at i on

* l-or ma it t oe (STRIICTRAN I

h . on c:

(1I~rpn i LIM o f ADS) 1 o tc t ?ianag emen t 'Pot) 1 s and

1"'c-hn I tjtw , A il For ce IMat a Aut omat ion Atqency ,Gurit er AFS , AT.,

M 1 91 1

4 -','0

(2) Finfer, M., et al, Software Debugging Methodology,

Final Technical Report, April 1979, RADC-TR-79-57, Three volumes.

C. StatLs

STRUCTRAN I and STRUCTRAN II are program translation

tools which assist structured programming in FORTRAN. Both tools

have been implemented on the UNIVAr 1108 computer and are exer-

cised daily at the Defense Mapping Agency. STRUCTRAN I has been

implemented on RADC's HIS 600/6000 series computer under GCOS.

d. Description

STRUCTRAN I is a preprocessor/translator which allows

the use of extended structured FORTRAN source statements without

changing the standard FORTRAN compilers. Listings for the input

source code are automatically indented. The extended FORTRAN

language, DMATRAN, contains five structured statement forms which

can be mixed with FORTRAN statements in the source program.

Ordinary FORTRAN control statements are no longer used. The

five DMATRAN forms are:

0 IF . . . THEN . . ELSE . ENDIF. This construct
provides block structuring of conditionally executable
sequences of statements.

0 DO WHILE END WHILE. This construct permits
iterative execution of a sequence of statements while
a specified condition remains true.

0 DO UNTIL . . . END UNTIL. This construct permits
iterative execution of a sequence of statements until
a specified condition becomes true.

0 CASE OF . . . CASE . . . CASE ELSE . . . END CASE.

This construct allows multiple choices for program
control flow selection.

* BLOCK - name - END BLOCK. This construct (and
corresponding INVOKE - name - statement) provides a
facility for top-down programming and internal param-
eterless subroutines.

STRUCTRAN I translates the DMATRAN source statements

into a FORTRAN program that i compatile with the ASA standard

FORTRAN X3.9 and can he compiled by a standard ASA FORTRAN com-

piler.

4-27

STRUCTRAN II translates unstructured programs written

in FORTRAN V into structured source programs which are logically

equivalent to DMATRAN source programs.

The translator derives a graph of the program, reduces

the graph to a hierarchy of single entry/exit subgraphs, adding

variables as needed, and generates a structured version of the

source program which implements the reduced graph.

The output of STRUCTRAN II can be examined manually

in order to make improvements or modifications, and then trans-

lated back to FORTRAN by STRUCTRAN I. The DMATRAN program is

easier to understand, modify, and maintain than the original

FORTRAN program.

e. Research and Findings

(1) AF Data Automation Agency - Source (1)

RADC reports that STRUCTRAN I and STRUCTRAN II

provide a fast and efficient solution to the promotion of struc-

tured programming in FORTRAN. STRUCTRAN I is highly transferable

but there may be problems with transferring STRUCTRAN II because

of its complexity and apparent system dependency.

(2) Finfer et al - Source (2)

(a) A structured DMATRAN program has highly visible

form which reveals the intended function more readily than a

FORTRAN program. Blocks of code and the possible sequences of

blocks which can be executable are well-defined.

(b) While the use of structured programming has

a positive effect on program reliability and maintainability,

there is also a negative aspect to the use of DMATRAN. Although

the user is familiar with the DMATRAN version of the program

rather than the FORTRAN version, most of the available debugging

and program analysis tools operate on the FORTRAN or object code

version of the program.

4-28

4.2.7 FAVS (FORTRAN Automated Verification System)

a. Category - Testing Aid, Verification and Validation
Tool

* Test Completion Analyzer

* Test Case Selection (guideline for manual test case
selection)

e Test Data Generation (guideline for manual data
preparation)

* Dynamic Analysis

* Execution Analyzer - software probes
* Path Flow Analyzer

* Static Analysis
* Path Structure Analyzer

* Anomaly Detector

0 Reachability Analyzer
o Debug Tools - dumps, breakpoint, trace, cross-

reference, graphic output I
o Interface Checker

e Usage Counter

* Variables Analyzer

* Automatic Documenter (program documentation)

* Regression Testing (guidelines to modules affected
by coding changes)

o Restructuring Program

b. Sources

(1) Compendium of ADS Project Management Tools and

Techniques, Air Force Data Automation Agency, Gunter AFS, AL,

May 1977.

(2) Finfer, M., et al, Software Debugging Methodology,
Final Technical Report, April 1979, RADC-TR-79-57, Three volumes.

c. Status

FAVS is a system for validating and testing FORTRAN
programs which is based on a modified and enhanced version of
General Research CorpoLation's proprietary RXVP Automated Verifi-

cation System. The system has been implemented at Rome Air Devel-
opment Center (RADC) on the Honeywell 6180 under GCOS.

4-29

- .-- A4

d. Description

FAVS performs both static and dynamic analysis of FORTRAN

and DMATRAN programs and provides automatic program documentation.

Its pr~mary use is to determine the extent to which the programs

have been tested and to provide guidelines for the preparation

of additional test cases.

The static analysis includes determination of program

paths (control flow), inter- and intra-module relationships, i
cross reference of all symbols, common block and symbol usage,

and syntax analysis. inconsistencies not normally checked by

compilers can be identified, including mixed mode expressions,

improper subroutine calls, variables that may be used before

being set, graphically unreachable code, and potentially infi-

nite loops.

Instrumentation of the program with software probes

permits dynamic analysis, determines testing coverage during

execution, and produces comprehensive reports identifying the

paths remaining to be exercised.

Execution analysis indicates which modules, D-D (decision- 1

to-decision) paths and program statements have been exercised,

including the number of times each statement was executed and

each D-D path was traversed. The entry and exit values of the

variables are traced dynamically.

Reports are generated for the current test run and cumu-

latively for all past test cases, for a single module or a group

of modules. Details of individual D-D path coverage on a module

are optional. D-D paths not traversed for the current test case

and for all test cases are also identified.

Processing is directed by user input in the FAVS command

language. The commands include REACHING, by which the user can

determine which D-D path must be executed for a particular state-

ment to be reached, and RESTRUCTURE, which translates existing

FORTRAN programs into the structured language DMATRAN.

4-30

FAVS provides automatic programming documentation as

follows:

" Source listings showing the number of each state-
ment, the levels of indentation and the D-D paths.

" Statement analysis by type (classified or declara-
tion, executable, decision, documentation).

" Common blocks and modules (subroutines) dependencies.

" Common block symbol matrix for modules.

" Cross reference listing of all symbols set or used
by all modules on the library.

" List of read statements within a module.

For regression testing, the FAVS reports showing module,

path, and variable dependencies can be used to determine the

effect of proposed coding changes on the rest of the system.

e. Research and Findings (Source 1)

A performance evaluation of FAVS was not available at

the time of the report. However, RADC anticipates that computer

resources required for testing and maintenance purposes should

decrease substantially with the use of FAVS.

4.2.8 FORTRAN Code Auditor

a. Category - Code Production and Analysis Tool

" Standards Enforcer

" Structured Programming AidA
" Optimizer (Checks predefined optimization standards)

b. Sources:

(1) Compendium of ADS Project Management Tools and

Techniques, Air Force Data Automation Agency, Gunter AFS, AL,

May 1977.

(2) Finfer, M., et al, Software Debugging Methodology,

Final Technical Report, April 1979, RADC-TR-79-57, Three volumes.

4-31

(3) TRW (Catalog), Software Tools Catalogue and Recom-

mendations, TRW, Defense and Space Systems Group, January 1979.

c. Status

The FORTRAN Code Auditor described here is a represen-

tative example of automated tools which analyze FORTRAN programs

for conformance to predefined programming standards and conven-

tions. The auditor is being exercised approximately 100 times

a week on the U. S. Army's Site Defense Software Development

Program.

d. Description

The FORTRAN Code Auditor analyzes a FORTRAN source program

and audits each statement for conformance to standards pertaining

to readability, structured programming techniques, and optimi-

zation of object code. The auditor does not modify the users'

source code but lists the code indicating the source state-

ments which deviate from the predefined standards. SummaryH

reports of deviations are provided for each subroutine and for

the entire program.

The FORTRAN source statements must be free of syntax

errors, since syntax errors are not detected by the auditor.

The standards which are monitored are:

" Rules for quantity and placement of comments

" Rules for physical placement and groupi ig of code
elements on the source code listing

" Limitations to module size

" Restrictions on the use of certain instructions (for
the purpose of optimization of the object code execu-
tion time)

" Rules for top-down design and hierarchical structure.

4-32

e. Research and Findings

(1) AF Data Automation Agency - Source (1)

RADC anticipates that proper application of the

tool will help reduce the cost cf software development and

maintenance. Transferability to other computer environments is
estimated to be: 750 hours to IBM, 600 hours to UNIVAC, and

460 hours to CDC.

(2) Finfer, M., et al - Source (2)

The FORTRAN Code Auditor is an effective mechanism
for enforcing standards and improving both verification and main-

tenance activities.

4.2.9 FORAN (FORTRAN Analyzer Program)

a. Category - Verification and Validation Tool

* Static Analysis

" Variables Analyzer

" Debug Tools - cross reference

" Interface Checker

" Anomaly Analyzer

b. Source

Finfer, M., et al, Software Debugging Methodology,

Final Technical Report, April 1979, RADC-TR-79-57, Three volumes.

c. Status

FORAN is a FORTRAN source code analyzer used at the

U. S. Army Advanced Research Center (ARC) in Huntsville, Alabama,

in support of the Ballistic Missile Defense Advanced Technology

Center (BMDATC).

The FORAN analysis is limited to 4095 data items and

a total of 24,000 unique references for all named items.

4-33

d. Description

FORAN performs static analysis on source code written

in any dialect of FORTRAN. Usage of program labels, tags, data

variables, constants, subroutines, and other program elements

are analyzed for a main program and its related subroutine com-

ponents. Each item name is listed, showing the statement numbers

where the item is referenced and how it is referenced (assigned,

used, input, output, subroutine CALL, etc.). Individual pro-

gram units can be separately analyzed. FORAN also identifies

symbols defined but not used, discrepancies in variable type

and dimension, and number and type of parameters in functions

and subroutines. Syntax errors are flagged during the analysis.

FORAN's primary use is to determine possible computa-

tion or logic errors from the static analysis of data usage.

It is also valuable in analyzing the effect of a program modifi-

cation on data usage.

e. Research and Findings

Finfer, et al report that "FORAN is easy to use and its

output contains more information and is easier to read than a

compiler's symbolic reference map."

4.2.10 Modern Programming Practices (MPP)

a. Category - Code Production and Analysis Technique, Con-

figuration Control, Redesign

" Structured Programming Aid

" Pseudo-Code

" Support Library

" Code Reading,'Review

" Interactive Debugging/Testing

" Documentation Aid

4:-3 4

b. Sources

(1) Baker, F. T., "Structured Programming in a Pro-

duction Programming Environment," IEEE Transactions on Software

Engineering, Volume SE-I, Number 2, June 1975, pp 241-252.

(2) McNurlin, B. C., "Using Some New Programming Tech-

niques," EDP Analyzer, Volume 15, Number 11, November 1977, pp

1-13.

(3) Holton, J. B., "Are the New Programming Techniques

Being Used?" Datamation, Volume 23, Number 7, July 1977, pp 97-

103.

(4) Compendium of ADS Project Tools and Techniques,

Air Force Data Automation Agency, Gunter AFS, AL, May 1977.

c. Status

IBM introduced the concept of Improved Programming Tech-

nologies as design and programming aids in the early 1970's.

The ideas of structured programming have gained widespread recog-

nition and it is generally agreed that the use of these "Modern

Programming Practices" during system development will improve

maintainability. Literature references concerning the applica-

tion of the techniques to the operations and maintenance phase

are extremely limited. However, the following comments and re-

commendations apply to their application in any life cycle phase.

* The major problem in implementing the technique is
that people do not like to change.

o The introduction of the technique requires careful
planning, substantial training, and dedicated man-
agement support.

d. Description

(l) Structured Programming

A structured proqram is a program in which the loqic

flow proceeds from beginning to end without arbitrary branchinq.

The purpose of the structured programminq technique is to make the

proqram easier to read, comprehend, debug, and maintain. First,

4-35

the user must develop or adopt a set of standards which explic-

itly define the required structuring techniques, along with

coding, formatting, and naming conventions. Some typical require-

ments for a structured module (Source 1) are:

*It has an intelligible name

*It is about one page of source code in length

*It contains functions that logically fit together

*It has one entry and one exit

" Coding is restricted to three basic control
structures - sequence, alternation (IF THEN ELSE)
and repetition (DO WHILE) , and possibly two op-
tional structures - DO UNTIL and CASE v

e Indentation is used to show the structure of
the program on the source listing

" Exceptions to standards (for example, use of
GOTO) are approved and documented

" Team members must review each other's code

The four approaches to providing the control flow

required for structured programming (Source 1) are:

e Structures are directly available as statements
in the programming language. (For example,
PL/I provides the three basic control structures.)

io Structures may be simulated using a few standard
statements. (For example, CASE can be simulated
in PL/I.)

* A standard preprocessor may be used to augment
the basic language. (For example, a macro as-
sembler for assembly languaqes.)

* A special precompiler may be written to compile
augmented language statements into standard
statements. (For example, a special precompiler
for FORTRAN.)

Tools may be specially written by the user or vendor-

supplied; for example, IBM offers SCOBOL which supports struc-

tured programming in COBOL.

4-36

(2) Top-Down Development/Programming

In the development phase, structured programming

is closely associated with top-down development. In production,

IBM Federal Systems Division (Source 1) has separated the concept

of top-down development from that of structured programming in

order to provide for the use of structured programming techniques

on maintenance projects as well as development projects. Ac-

cording to this definition, top-down development refers to the

process of concurrent design and development of program systems

containing more than a single compilable unit. Development proceeds

in a way which minimizes interface problems by integrating and

testing modules as soon as they are developed. In everyday pro-

duction programming, top-down development means eliminating (or

at least minimizing) writing any code whose testing depends on

code not yet written or on data not yet available.

Top-down programming applies the concept to a single

program, typically consisting of one or a few load modules and

a number of independently compilable units.

(3) Development Support Library (DSL)

The DSL keeps all machine readable data on a pro-

ject in a series of data sets which comprise the internal library.

Corresponding to each type of data in the internal library, there

is a set of current status binders which comprise the external

library. Sufficient archives are maintained to provide complete

recovery capability. The DSL is maintained by the project li-

brarian using an automated library package and includes such

data as:

" Current and backup versions of programs

" Operating systems instructions

" Test data

o Test results

o Documentation

e Project performance data

o Library procedures.

4-37

The use of a DSL is usually associated with the

use of structured programming; however, Baker (Source 1) states

"because ongoing projects may not be able to install a DSL,

an implementation of only structured coding is acceptable in

these cases."

(4) Chief Programmer Teams (CPT)

A CPT is a functional programming organization

built around a nucleus of three experienced persons doing well-

defined parts of the programming development process using top-

down development, structured programming techniques, and support

libraries. The nucleus organization consists of a chief pro-

grammer, a backup programmer and a project librarian. Other

programmers are added to the team only to code specific, well-

defined functions within the framework established by the chief

programmer and the backup programmer.

(5) Structured Walk-Through

Structured Walk-Throughs are a series of technical

reviews at various stages of program development during which

the developer "walks through" the design, code, test plan,

etc. for review by a peer group. 7he group is usually limited

to no more than six people and the emphasis of the walk-through

is on error detection rather than correction.

(6) Pseudo Code (or metacode or program design language)

Pseudo code is a structured, natural language notation

used during software design. Its purpose is to provide precision

and readability for a smoother and more accurate transition between

design and coding.

(7) Interactive Debugging and Testing

For interactive (or on-line) debugging and testinq,

the programmer uses a terminal to debug and test a proqram after

the code has been entered into the system by a data clerk.

4-18

(8) Project Workbook (or Unit Development Folder)

The workbook contains the history and current status

of each program module. As a minimum for program maintenance,

the workbook should include:

* The design structure showing the module's place

in the hierarchy

e The data flow analysis showing the I/O requirements

o The program listing (the structured code)

o The test plan and test case results

o The problem reports

o The log of changes.

e. Research and Findings

(1) Structured Programming

Opinions concerning the role of structured program--

ming techniques in program maintenance range from the view that

their use for maintenance means starting all over to the approach

that they can be used to modify a system without restructuring

it (Source 2). Tools are available (Source 4) to structure exist-

ing programs for ease of maintenance modification and then trans-

late the modified program back to the original language for system

processing. Another possibility is the "phasino in" of struc-

tui(,! programs during the maintenance phase. For example, at

IBM Federal Systems Division (Source 1), pLoqrams were structured

when ir dule; had to be rewritten or replaced.

(2) Structured Walk-Throughs

Hol ton's survey (Source 3) indicated that struc-

tured walk-throughs are more often used in the planning and design

4)pase than for drtai1le design and coding. McNurlin (.Source 2)

-eports that many peooA]e think walk-throughs are more eff ect ive

A,-, at design .zeview techniqile, with a corol lary opinion that code

waI k -throu(h are not reqii red hoecajse he design wal k-th r CL)h

_are so effective.

4- a

A0-A82 985 lIT RESEARCH INST CHICAGO IL F/B 9/2
A REVIEW OF SOFTWARE MAINTENANCE TECHNOLOGY.(U)
FEB 80 J 0 DONAHOO, 0 R SWEARINGEN F30602-78-C-0255

UNCLASSIFIFO RADC -TR-80-13 ML

llluuluunuuuuu

SmeeI.....

f. Maintenance Experience

(1) Multiple Implementation

Charles Holmes (Source 2) described two attempts

at McDonnell-Douglas Automation Company to modify four programs

by implementing structured programming, chief programmer teams,

an on-line production library, top-down programming, and struc-

tured walk-throughs. The first attempt (implementing all the

new techniques at once) failed "because we were too ambitious

and because we lacked coaching and the visibility of the experience

of other companies." The second attempt (implementing the new

techniques in phases beginning with a two week course on struc-

tured programming, top-down programming, pseudo code, and struc-

tured walk-throughs) was considered to be successful, with pro-

jects being completed more quickly and with improved quality.

(2) Support Libraries

Surveys (Sources 2 and 3) have indicated that although

the DSL is seldom implemented as elaborately or completely as

originally defined, many organizations use procedure libraries

and automated library functions with favorable results.

Columbus Mutual Life Insurance Company reported

(Source 2): "We wouldn't do our program development and maintenance

any other way than by using the support library function." Columbus

Mutual uses the LIBRARIAN package from Applied Data Research

and its ROSCOE remote job entry system. For program maintenance,

production source code is copied to create a test version. Modi-

fications to the test version are "temporary" until the program

is compiled, tested and approved, and then LIBRARIAN is used

to make the changes permanent.

HQ AFSC/ACDPL reported (Source 4) on the use of

WWMCCS Program Support Library (PSL) to support the development

and maintenance of computer programs in a top-down structured

4-40

programming environment. The PSL supports a large organization

with many persons working on different and often unrelated pro-

gramming development and maintenance projects.

(3) Interactive Processing

The Mellon Bank (Source 2) found that the use of

interactive debugging techniques resulted in "somewhere between

a 3 to 1 and 5 to 1 improvement in the manhours needed to do

a maintenance job." The interactive debugging was accomplished

by inserting testing aids into the programs to monitor progress

through the program execution and to detect the cause of abnormal

termination.

TRW Defense and Space Systems Group (Source 2)

reported that the use of terminals and CRT displays of the pro-

gram has eased the problem of fitting modifications into the

indented format of structured programs.

AFDAA, HQ AFDSC/GLD (Source 4) reported that "on-

line terminals greatly assist the programmer to develop struc-

tured code, but they likewise reduce his inclination to desk

check his program," and that the use of "top-down design and

structured programming does not guarantee that the programmer

will write a good program."

4.2.11 CSPP (COBOL Structural Programming Precompiler)

a. Category - Code Production Tool

*Structured Programming Aid

*Preprocessor

b. Source

Compendium of ADS Project Management Tools and Techniques,

Air Force Data Automation Agency, Gunter AFS, AL, May 1977.

4-41

c. Status

CSPP was developed under RADC's Structured Programming

Contract with IBM to demonstrate the feasibility of the pre-

compiler specification task. Its purpose is to provide program-

mers with a structured programming capability for ANS COBOL.

The tool is highly transferable and is being used at several

installations including:

" HQ Air Force Systems Command

" Defense Mapping Agency

" Warner-Robbins Air Logistics Center

" Air Force Institute of Technology at WPAFB

" Air Training Command

" Defense Communications Agency

" Electronics Systems Division

d. Description

The CSPP (COBOL Structured Programming Precompiler)

is a tool to facilitate structured programming in ANS COBOL,

X.3.23 - 1968. The additions to COBOL are in the form of struc-

turing verbs, as defined in the RADC Structured Programming Series.

The CSPP accepts the augmented ANS COBOL as input and produces

a source program in ANS COBOL.

CSPP is itself written in ANS COBOL.

4.2.12 Performance/Maintenance Algorithms

a. Category - Performance Evaluation Technique

* Performance Analysis

o Requirements Determination

o Redesign Analysis

4-42

* Test Case Selection (aid)

* Regression Testing (aid to manual test case selection)

b. Source

Yau, S. S. and Collofello, J. S., Performance Consid-

erations in the Maintenance Phase of Large-Scale Software Systems,

Interim Report, June 1979, RADC-TR-79-129.

c. Status

Algorithms are being developed to apply a maintenance

technique for predicting the system performance requirements

which will be affected by a proposed modification. An interim

report has been published and preparation of a second report

containing descriptions of the algorithms is in progress.

d. Description

The maintenance technique described in the interim report

can trace repercussions introduced by maintenance changes in

large-scale systems and predict which performance requirements

may be affected by the program modifications. The techniques

will enable maintenance personnel to incorporate performance

considerations in their criteria for selecting the type and loca-

tions of required software modifications and also to identify

which performance requirements must be verified following the

modifications.

The second report will cover the following topics:

" Formal description of the algorithms for identifying
the eight mechanisms for the propagation of performance
changes in a large-scale program. Also included
will be proofs of the correctness of these algorithms
as well as illustrative examples.

" Formal description of the algorithms for identifying
the critical software sections of a large-scale pro-
gram.

" Formal description of the algorithms for identifying
performance dependency relationships in a large-scale
program.

4-43

" Formal description of the algorithms composing the
technique for predicting performance requirements
affected by maintenance activity. Also included
will be proofs of the correctness of these algorithms.

" Demonstration of the maintenance technique during
the maintenance phase of a typical program.

4.2.13 CCS (Change Control System)

a. Category - Configuration Control and Code Production

Technique

" Support Library (programming support and central
administrative data base)

" Configuration Status Reporting (status of changes)

" Code Comparator

" Utilities (standard utilities such as compilers,
editors, and loaders)

" Code Reviews and Walk-Throughs

" Requirements Determination (determines dependencies
among changes and enforces concurrent processing
of interdependent changes)

b. Source

Bauer, H. A. and Burchall, R. H., "Managing Large-Scale

Software Development with an Automated Change Control System,"

Proceedings COMPSAC 1978, Chicago, IL, November 1978, pp 13-17.

c. Status

CCS is a programming support system providing an inter-

face between production and maintenance programmers and the No. 1

Electronic Switching System (ESS) software. No. 1 ESS is an

extremely large (100,000 - 1,000,000 lines of code), complex

system operating in a very dynamic environment. Programming

support of this system is applied under conditions which are

characterized by:

" High rate of software changes

" Multiple software development projects

" Large and growing programming staff

4.-44

" Large, tightly coupled program units

" Overlapping responsibilities for program unit modi-
fication among programmers.

CCS provides a capability for minimizing the adverse

effects of the above factors on the programming staff. It has

been in operation since January 1977 at Bell Laboratories. In

its first year of operation over 4000 program modifications were

processed.

d. Description

The major functions of CSS are:

" Controls application and approval status for program
source changes

" Generates and maintains object code changes

" Permits early source code changes

" Determines change dependencies and enforces con-
current processing

" Supports continuous integration of releases in
sequence

* Permits identification of alternative system versions

" Provides language/compiler independent processes

" Maintains central, administrative data base

" Provides standard administrative syntax.

Through the use of CCS programmers have access to a

standard set of support programs including compilers, editors,

and loaders for implementing modifications and updates to No. 1

ESS. In addition, CCS manages the program change process by

recording both source and object code versions of program units,

by providing selective comparison of program versions for analysis

of changes, and by storing and retrieving information about change

status foL review. Thus, CCS provides a common access to a variety

of support software and facilitates management control of the

change process.

CCS evolved as a result of combining a data management

system with three extensions to the Source Code Control System

4-45

(SCCS) concept at Bell Laboratories. SCCS enables reconstruc-

tion of any prior version of a source module by applying recorded

changes (deltas) to a baseline, in time sequence until the desired

version is reached. The first extension relaxed the time sequence

constraint for reproducing module versions. Through a program

called MANAGER, source versions containinq any specified deltas

can be created. The second extension provided a capability for

incremental installation of object code changes in any order

desired. Use of this COMPARE program eliminates the need for

recompiling and reloading for each change to a module. The final

extension added a formal, finite state change model to the system.

It is used to track and control change status for No. 1 ESS.

e. Maintenance Experience

At the time of the reference source article over 200

programmers were engaged in repairing and updating No. 1 ESS

software. All programmers were using a common master copy of

ESS source code. From a baseline such as this, CCS can produce
past versions of the system for operations support or generate

new versions for testing. A single module may undergo modifi-

cation by more than one programmer at a time under control of

CCS. As an example, in 1977, 546 modules were changed with an

average of 13 deltas pet module by four different programmers. A

substantial improvement is productivity is attributed to the

use of CCS, although the use of other techniques such as reviews

and walkthroughs had a "large" effect.

For system corrections or enhancements CCS is used in

the following way. An approved software change (Failure/Feature

Report) is tagged with a unique identifier in the CCS data base

and as a programmer submits a source delta for that change it

is logged against that identifier. The set of deltas for that

change is available for testing when all have been submitted

and are successfully compiled. The programmer may test against

any system version desired. Once his testing is completed he

informs CCS and the change is processed through a sequence of

quality assurance steps until it is released for incorporation

in the next reload of the system.

4.2.14 FADEBUG-I (FACOM Automatic Debug)

a. Category - Verification and Validation, and Testing

and Integration Tool

* Output Analyzer (compares output results to desired
output specified by user)

" Static Analysis

" Path Structure Analyzer

" Completion Analyzer (aid to user analysis)

" Utilities (standard FACOM OS)

b. Source

Itoh, Daiju and Izutani, Takao, "FADEBUG-I, A New Tool

for Program Debugging," Proceed igs IEEE Symposium Computer Soft-

ware Reliability, 1977, pp 38-43.

c. Status

The FADEBUG-I program is a new debugging aid to be used

at the early debugging stage of programs written in assembler

language. It is an option of the FACOM 230-60 OS debug utility.

d. Description

FADEBUG-I has two primary functions as a debug aid.

Comparing the set of output data produced by a program with usel-
specified output data is identified as its most important function.

The other function involves automatic isolation and definition

of all possible execution paths from entry to exit in a program

module. These capabilities aid in detecting and removing program

bugs.

In the module test stage of program development the
following areas of difficulty are identified:

4-47

" Examination and verification of output data from
module test execution

" Examination of module processing paths for logical
errors

* Evaluition of module logic paths for omissions.

FADEBUG-I is designed to reduce or eliminate these dif-

ficulties through its test function or route definition function.

For the test function the user must provide a set of desired

output data and a set of inpu* data. FADEBUG-I initiates execu-

tion of the module using the input data and after execution checks

the actual output data against the desired output data. Dis-

crepancies are identified and listed, In the route definition

mode FADEBUG-I analyzes the source assembler language version

of the module and lists all physical routes through the module

code from entry to exit.

The source article identifies areas for improvement

of FADEBUG-I and recommends some additional functions. The im-

provements consists of simplifying certain control statements

and developing a better algorithm for identifying logical paths.

Additional functions that might be useful are program production

management data collection and automatic system test and data

generation.

e. Research and Findings

The authors of the source article made a survey of

FADEBUG-I users and nonusers within a programming group. Use of

FADEBUG-I in the module test stage resulted in manpower reductions

of 11 percent and improvement in debugging speed of 17 percent.

After the module test stage, the users reported that preparaticn

of test data and control statements was in general more difficult

than similar preparation reported by nonusers. However, they

also indicated that analysis of output data from the tests was

easier with FADEBUG-I results.

4-48

4.2.15 SPTRAN

a. Category - Code Production Tool

" Structured Programming Aid

" Formatter (from free-form to FORTRAN)

" Automatic Documenter (program listing)

" Preprocessor

b. Source

Elliott, I. B., "SPTRAN: A FORTRAN-Compatible Struc-

tured Programming Language Coverter," Proceedings MRI Symposium

on Computer Software Engineering, New York, NY, April 1976,

pp 331-336.

c. Status

As of the date of the source article, SPTRAN was resident

on a 16-bit Honeywell H316 computer. The converter is written

in ANSI FORTRAN, and occupies 16,000 words of core, and can

be implemented on any computing system having a word length of

at least two bytes. Successful use of the converter in reducing

program development time for three applications is reported in

the source article.

The SPTRAN is listed as being available with the fol-

lowing items:

e Source code listing

e Source deck (029 cards)

* User manual

& Installation manual.

d. Description

As described in the source article, "The SPTRAN converter

allows a user to apply structured programming concepts by coding

in a language that has the structured and free-format features

of PL/I, but is otherwise like FORTRAN. This language, called

SPTRAN, was designed such that it combines those features of

4-49

S.

FORTRAN and PL/I most often used for scientific programming ap-

p1licat ions."

Free-form SPTRAN input is translated into ANSI FORTRAN

and the original SPTRAN source code is retained as FORTRAN remarks.

SPTRAN advantages are described as follows:

" Provides actual experience in encoding and executing
structured programs

" Enables timely creation of FORTRAN programs

" Results in annotated program listings that are easy
to read and can supplement documentation

" Provides early introduction to structured constructs
and principles.

e. Research and Findings (Elliott)

There was no direct reference to the use of the SPTRAN

converter for support of software maintenance. However, ref-

erences to use of SPTRAN in program development cited reductions

in debugging time attributed to use of this converter.

4.2.16 Software Enginee:ing Facility (SEF)

a. Category - Configuration Control, Verification and

Validation, Testing and Integration Techniques

" Configuration Control -Status Reporting

" Redesign Analysis

" Static Analysis

" Interface Checker

" Automatic Test Driver

" Test Output Analyzer

" Regression Testing

" Documentation Aid

" Simulator

b. Source

Irvine, C. A. and Brackett, J. W., "Automated Software

Engineering Through Structured Data Management," IEEE Transactions

4-50

on Software Engineering, Volume SE-3, Number 1, January 1977,

pp 34-40.

c. Status

The Software Engineering Facility concept has been imple-

mented at the Naval Air Development Center, Warminster, Pennsyl-

vania. As reported in the source article, this SEF is undergoing

continuing upgrading to expand its capabilities to support devel-

opment of well-engineered software. The authois state that a

fully implemented SEF will provide "central support for an inte-

grated collection of subsystems, and the subsystems (will) provide

appropriate facilities for all phases of the software development

process, from requirements definitions through maintenance and

enhancement."

d. Description

An SEF consists of a software engineering data base,

Structured Data Management System (SDMS), Structured Data Language

Processor (SDLP) and a set of subsystems which provide specialized

support to software development functions. A primary objective

of the SEF is to provide a capability for automated capture of as

much software development data as possible for the software engi- P

neering data base. In addition, the SEF, through the Structured

Data Language, provides a common protocol for involving the sub-

system processors. These processors may be linked directly to

the SEF as an "SDMS integrated processor" or may be free-standing

with no SDMS dependencies, an "SEF compatible proces-or."

The SEF components are described as follows:

e Software Engineering Data Base. This data base
contains information stored by the various SEF
processors (subsystems) and also used by them.
This information relates to software modules,
properties and structure of the system under
development. The data base structure is compatible
with the structure of the software being developed.
Typical of information stored in the data base
is hierarchic structure, intermodule dependencies,
quantified system properties and dynamic sequencing
constraints.

4-51

" Structured Data Management System. The SDMS functions
as the manager of SEF resources. It is the facility
for storage, inspection and manipulation of software
engineering data and it provides control to the
interaction among SEF processors and the software
engineering data base.

" Structured Data Language Processor. The SDLP
provides a capability for involving a standard
set of SDMS commands through the Standard Data
Language.

" Subsystem Processors. The types of subsystems
which are selected for inclusion in a given SEP
processor set are dependent upon the particular
requirements of the software system to be supported
by the SEF. For example the following subsystems
could be included in a SEP processor set:

Analysis, Design and Specification Tools. All
information for data base entry will be captured
by these processors as they perform their respective
functions.

System Analyzer. Data captured by the analysis,
design and specification processors will be used
by the system analyzer to develop a model of the
system software. This model can be used to simu-
late system behavior for the analysis process. i
Interface Auditor. The interface auditor will
perform various interface consistency analyses
using the system software structure as recorded
in the data base. This capability can be used I
to evaluate software change impact on interfaces
and modules.

Report Generator. Both management and system
performance data are produced in report format
by the report generator. These reports can be
used in status reporting and in documenting the
system for maintenance.

Software Testing and Validation Tools. An array
of testing and validation processors may be included
in the SEF to provide automated testing of software
revisions and validation of performance against
established performance criteria.

e. Maintenance Experience

The source report authors cite success with the SEF at

NADC even though only limited capability is implemented.

NADC uses an SEF process called MODTST. This process

accepts a set of source code modifications as input, produces

new executable modules, locates the associated test data, runs0
the tests, compares the test results with historical test results,

and produces a discrepancy report. The discrepancy report indi-

cates whether or not unintended changes occurred and is the

basis of regression testing.

No performance data is given in the article. NADC is

planning to integrate other tools into the SEF in the future.

4.2.17 PPE (Problem Program Evaluator)

a. Category - Performance Evaluation ToolI
* Performance Monitoring

e Optimizer (aid)

b. Sources

(1) Stucki, L. G. et al., Methodology for Producing

Reliable Software,' McDonnell Douglas Astronautics Company, March

1976, NASA CR 144769, Two volumes.

(2) Compendium of ADS Project Tools and Techniques,

Air Force Data Automation Agency, Gunter AFS, AL, May 1977.

c . Status

PPE is a proprietary software monitor package distributed

by Boole and Babbage, Inc., Sunnyvale, California. it has been

implemented on IBM computers and is language independent.

d. Description

PPE is a performance measurement tool which samples a pro-

gram's execution at regular intervals and reports timing data for

user analysis. The measurements include:

4-53

" Percent of time the program is actively executing.

" Percent of time the program is waiting for I/O to
complete.

" Percent of time the program is waiting for non-I/O
events to complete.

" The distribution of the I/O among the program's daia
sets.

" Percent of time the problem program is executing SVC's
(Supervisor Calls).

" The instruction location in core where the various
activities and waits occ'irred.

Since PPE resides in the same region as the program being measured,

it can readily be applied to programs during production runs to

analyze program performance in the operational environment. The

analysis is performed externally on load modules and does not

require any modification to the executing program.

The Study Report output from PPE provides information

concerning the distribution of CPU time throughout the program.

The ten most frequently executed intervals are listed separately.

These and other timing measurements enable the programmer to con-

centrate optimization activity on the most time consuming or

least efficient areas of code and on the data sets that show the

highest percentage of activity.

e. Research and Findings - Source 1

PPE was among the automated tools which were evaluated

under contract to the NASA Goddard Space Flight Center (GSFC) and

was in use at GSFC at the time of the study. The evaluations for

PPE were as follows:

(1) PPE is a well established proven tool of consider-

able use in performance measurement applications.

(2), PPE is recommended as a good tool for giving a

total picture of a program's efficiency but does not provide per-

formance statistics at the source statement level.

(3) The operating cost was evaluated at 1 in a scale

of 1 = low to 5 = high.

4-54

(4) The ease of use was evaluated at 2 in a scale of

1 = easy to 5 = difficult.

f. Maintenance Experience - Source (2)

HQ AFAFC/ADRR, Lowry AFB, reports that PPE has been used

for over five years and is the primary tool for evaluating produc-

tion programs. Inefficiencies disclosed during the earlier use of

PPE were used to derive programming "tips" and standards which

assist in preventing the reoccurrence of the inefficiencies in

new programs. A current savings of 10 hours IBM 360/65 time per

year was estimated at the time of the report.

4.2.18 PET (Program Evaluator and Te-ter)

a. Category - Verification and Validation Tool

" Execution Analyzer (software probes)

" Dynamic Analysis

" Ptmingw Analyzer

" PThFlow Analyzer

" Usage Counter

" Variables Analyzer

" Test Case Selection (aid to manual preparation)

" Test Completion Analyzer (aid to user analysis)

" Optimizer (aid to manual optimization)

" Standards Enforcer

" Static Analysis (syntactic profile)

" Assertion Checker

b. Sources

(1) Stucki, L. G. et al, Methodology for Producing

Reliable Software, McDonnell Douglas Astronautics Company, March

1976, NASA CR 144769, Two volumes.

(2) Stucki, L. G. and Foshee, G L., "New Assertion Con-

cepts for Self-Metric Software Validation," Proceedings IEEE

Conference on Reliable Software, Los Angeles, CA, April 1q75,

pp 59-65.

4-55

(3) TRW (Catalog), Software Tools Catalogue and Recom-

mendations, TRW, Defense and Space Systems Group, January 1979.

(4) Gilb, T., Software Metrics, Winthrop Publishers,

Inc., Cambridge, MA, 1977, 282 pp.

c. Status

PET, produced by the McDonnell Douglas Corporation, is a

validation/testing tool which performs both static and dynamic anal-
ysis of FORTRAN programs. Since 1972, it has been implemented on

IBM, CDC, Honeywell, and Univac computers and was recently in-

stalled at NASA Langley, Hampton, Virginia on the CDC 6000.

d. Description

The PET preprocessoz inserts software probes into the

program code and the postprocessor analyzes the data collected by

the probes during program execution. Four one-page reports are

produced for eac~h program:

" A syntactic and operational profile

" A subprogram operational summary

" A subprogram execution summary

" A subprogram timing summary.

An annotated source listing is used for displaying the execution

statistics associated with each source statement.

The data collection includes:

" The number of times each executable statement was
executed.

" The number of times each branch was executed. This
includes branch counts for logical and arithmetic IF
conditions, plus computed and assigned GOTO's branching
histories.

" The number and percentage of the total of executable
statements, non-executable statements, and comments.

" The number of coding standards violations.

" The number and percentage of all potential execu-
table statements that were executed one or more times.

" The number and percentage of program branches tested.

4-56

" The number and percentage of subroutine calls that were
executed.

" The number of times each subroutine was called, and
the names of those subroutines that were never entered.

" Relative timing for subroutine executions.

" The minimum and maximum values attained by an assign-
ment statement variable or DO loop parameter.

" The first and last values attained by an assignment
statement variable or DO loop parameter.

All data items except the counts of statement executions and branch

executions are optional at the user's request.

The PET reports and annotated listings provide insight

into dead code, impossible branches, highly utilized code, and

the degree of program documentation by COMMENT statements. The

timing summary and execution frequency counts provide informa-

tion for optimrizing program performance. Since the reports reveal

the untested code for each test case, they can be used to assist

the user in developing test cases which exercise the entire program.

The assertion checking capability of PET allows the user

to specify error checking criteria in the form of mathematical

statements and to direct their placement over any range or

position in the program. The system then generates and places

probes to monitor the progress of program execution for adher-

ence to these assertions.

e. Research and Findings

(1) Stucki et al - Source (1)

PET was evaluated under contract to the NASA Goddard

Space Flight Center (GSFC) as follows:

(a) The ease of use was evaluated at 1 in a scale

of 1 = easy to 5 = difficult.

(b) The operating cost was evaluated at 2 or 3,

depending on the options used, in a scale of 1 = low to 5 = high.

(c) PET was recommended for use in situations where

operating cost is not a major factor in the selection.

4-57

(2) Gilb - Source (4)

(a) Gilb reports that PET was used on an oper-

ational system of 40,869 program statements along with the

test data that had been used to test the system prior to release.

PET showed "hat the test data covered only 44.5% of the executable

source statements and only 35.1% of the branches. PET also de-

tected that 519 source statements (1.3%) contained coding standards

violations.

(b) The increase in execution time resulting from

the PET instrumentation varies from 25 percent to 150 percent

depending on the options used.

4.2.19 ATDG (Automated Test Data Generator)

a. Category - Verification and Validation Tool

" Test Case Selection (unit testing)

" Static Analysis

" Path Structure Analyzer

" Anomaly Detector

" Variables Analyzer

" Test Data Generation (aid to unit testing)

b. Sources

(1) Stucki, L. G. et al, Methodology for Producing

Reliable Zoftware, McDonnell Douglas Astronautics Company, March

1976, NASA CR 144769, Two volumes.

(2) TRW (Catalog), Software Tools Catalogue and Recom-

mendations, TRW, Defense and Space Systems Group, January 1979.

C. Status

ATDG was developed by TRW for NASA in Houston. It is an

experimental interactive tool for static error analysis and test

data generation to be used on FORTRAN programs for the UNIVAC 1110.

There is no batch mode version of the tool.

4-58

d. Description

ATDG examines a FORTRAN source program at the unit level

to identify effective test paths, data constraints for path execu-

tion, and path dependent errors. (Unit level refers to a single

subroutine, function or main program.) The values of program

variables which will produce optimal test cases are generated.

ATDG constructs a network by identifying the transfers

and connective properties between program segments. (A segment

is a set of contiguous FORTRAN statements with no branch points.)

The resulting directed graph is represented by a Boolean connective

matrix. The structural and logical characteristics of the unit

are used to define executable paths based on data constraints.

The goal is to exercise each transfer at least once, using the

fewest number of cases. Loops are considered to require one

iteration and unexecutable paths are eliminated.

The static analysis function supplements the error detec-

tion function of conventional FORTRAN compilers by identifying path-

dependent errors such as uninitialized variables, infinite loops

and unreachable code.

e. Research and Findings - Source (1)

ATDG was among the automated verification/testing tools

which were evaluated under contract to the NASA Goddard Space Flight

Center (GSFC). At the time of the evaluation, the tool was con-

sidered to be representative of current research in program testing

and proving. The advantage in the ATDG concept of connectivity

matrices is the ability to handle complex units of code. Support

for continued development of the tool was recommended.

4.2.20 DAVE (Documentation, Analysis, Validation and

Error Detection)

a. Category - Verification and Validation Tool

" Anomaly Detector

* Static Analysis

4-59

" Variables Analyzer

" Standards Enforcer (detects violation of ANSI
standards)

" Path Structure Analyzer

" Interface Checker

" Documentation Aid

b. Sources

(1) Osterweil, L. J. and Fosdick, L. D., "DAVE - A Vali-

dation Error Detection and Documentation System for FORTRAN Pro-

grams," Software Practice and Experience, Volume 6, September

1976, pp 473-486.

(2) Stucki, L. G. et al, Methodology for Producing

Reliable Software, McDonnell Douglas Astronautics Company, March

1976, NASA CR 144769, Two volumes.

(3) Browne, J. C. and Johnson, D. B., "FAST: A Second

Generation Program Analysis System," Proceedings Third Inter-

national Conference on Software Engineering, Atlanta, GA, May

1978, pp 142-148.

c. Status

DAVE is a FORTRAN validation tool and documentation aid

developed at the University of Colorado. It applies to programs

written in ANSI FORTRAN and can be modified to apply to other

languages.

DAVE is written in FORTRAN and was designed for ease of

portability. It contains approximately 20,000 source statements

and executes in four overlaid phases, the largest of which requires

approximately 50,000 decimal words of memory on the CDC 6400.

d. Description

The DAVE system for static analysis of FORTRAN programs

detects the symptoms of a wide variety of errors, assures the

absence of these types of errors, and exposes subtle data relations

4-60

and flows within programs. As an aid to program documentation,

DAVE produces information about the use of all local and global.

v3riableS in the program.

The primary methodology of the system is the use of data

flow analysis to reveal suspicious or erroneous data usage within

and between subprograms. A data base of information about each

program unit is created. Each data base contains a symbol table,

a COMMON table, a label table, and a statement flow table that

represents the control flow graph. A program call graph is con-

structed to represent relationships between programs being

called.

The system analyzes the sequential pattern of definitions,

references, and "undefinitions" of values for variables on the

principle that many common programming errors cause either of the

following rules to be violated:

" That a variable must not be referenced unless
previously defined (without an intervening
undefinition).

" That once defined, it must subsequently be
referenced before being redefined or undefined.

Among the errors that can be detected from violations of

these rules are uninitialized variables, misspelling of variable

names and labels, unequal lengths of corresponding argument and

parameter lists, transposed variables, use of exhausted DO indices,

and mismatched types and dimensions of arguments and parameters.

In order to detect the rule violations, it is necessary

to know the usage of every variable in every statement; that is,

whether it is used as input or output irn each case. Therefore,

a search of the subprograms is conducted along the paths defined

by the structural analysis, to look for the rule violations. Un-

executable" paths are not detected and are included in the analysis.

DAVE addresses the problem of data passing through calling param-

eters and through COMMON, and provides information about these

variables in terms of their input/output classification.

4-61

DAVE does not attempt to positively identify the exact

nature of every error in a program. instead, the program is probed

for suspicious and elusive constructs. The programmer must then

use the messages and warnings produced by DAVE to improve the pro-

gram.

e. Research and Findings

(1) Osterweil and Fosdick - Source (1)

DAVE will be revised to reduce unwanted output,

detect additional anomalies, use faster algorithms developed for

global variable optimization, and provide for interactive user

participation. It is expected that a future version of DAVE,

redesigned for efficiency rather than flexibility, will be capable

of analyzing larger program units in a smaller data base area and

will execute faster.

(2) Browne and Johnson - Source (3)

Browne and Johnson state that DAVE represents one

of the best FORTRAN validation tools available. However, the system

does not provide the full range of analyses that its data collection

facilities could support.

(3) Stucki et al - Source (2)

DAVE was among the automated verification/validation

tools which were evaluated under contract to the NASA Goddard Space

Flight Center (GSFC). The researchers state that DAVE has proven

to be a valuable documentation and checkout aid. The operating

cost was evaluated at 5 in a scale of 1= low to 5 =high and the

ease of use was evaluated at 2 in a scale of 1 =easy to 5 =diffi-

cult.

4 -62

4.2.21 PFORT Verifier

a. Category - Code Production Tool

" Standards Enforcer

" Debug Tools - Cross Reference

" Documentation Aid

" Interface Checker

b. Source

(1) Stucki, L. G. et al, Methodology for Producing

Reliable Software, McDonnell Douglas Astronautics Company, March

1976, NASA CR 144769, Two volumes.

c. Status

The PFORT Verifier checks the portability of FORTRAN pro-

grams and is representative of a class of automated verification

tools known as standards auditors or enforcers. PFORT has been

widely implemented and is available from Bell Laboratories, Murray

Hill, New Jersey.

d. Description

The PFORT Verifier checks a FORTRAN source program for

adherence to PFORT, a portable subset of ANS FORTRAN. Subprogram

communication is checked through common and argument lists. De-

bugging and documentation aids include a subprogram cross refer-

ence giving type, usage, and attributes of each identifier with a

list of the statements in which the identifier occurs. A sub-

program summary is also provided, listing argument attributes,

COMMON blocks used, subprograms called, and the calling programs.

e. Research and Findings (Stucki et al)

The PFORT Verifier was among the automated verification

tools which were evaluated under contract to the NASA Goddard Space

Flight Center (GSFC). It was recommended for use at GSFC with the

following observation: "can be especially valuable at GSFC when

verifying that vendor programs coming into GSFC adhere to a pre-

scribed set of standards." The operating cost was evaluated at

4-63

1 in a scale of 1 = low to 5 = high a-d the ease of use was eval-

uated at 2 in a scale of 1 = easy to 5 = difficult.

4.2.22 FORTRAN Structuring Engine

a. Category - Code Production and Analysis Tool

" Restructuring Program

" Preprocessor

" Formatter

" Structured Programming Aid

b. Sources

(1) Stucki, L. G. et al, Methodology for Producing

Reliable Software, McDonnell Douglas Astronautics Company, March

1976, NASA CR i 44769, Two volumes.

(2) TRW (Catalog), Software Tools Catalogue and Recom-

mendations, TRW, Defense and Space Systems Group, January 1979.

C. Status

The FORTRAN Structuring Engine, which tjansforms FORTRAN

programs into a structured superset of FORTRAN, has been imple-

mented on the IBM 360/370 and is available from Caine, Farber &

Gordon, Inc. (CFG), Pasadena, California. Feasibility studies

have been performed for the development of a .COBOL Structuring

Engine.
Id. Description

The FORTRAN Structuring Engine is a set of software

tools which produce a SFORTRAN source program and listing from

a FORTRAN source program. SFORTRAN is a highly structured superset

of FORTRAN which was developed by CFG to extend and improve FORTRAN

for the support of structured coding. A SFORTRAN to FORTRAN

preprocessor is available to allow compilation and execution

of SFORTRAN programs. The SFORTRAN program listing is designed

to easily identify blocks of code and thus obtain a picture of

the overall logical structure of the program.

4-64

,-,' -" 1iOWNI

The Structuring Engine accepts programs written in ANSI

FORTRAN, IBM FORTRAN, UNIVAC FORTRAN V, CDC FORTRAN extended

or unextended, and Honeywell FORTRAN.

e. Research and Findings (Source 1)

The FORTRAN Structuring Engine was among the automated

tools evaluated under contract to the NASA Goddard Space Flight

Center (GSFC). It was not recommended for GSFC due to the extreme

resource requirements (one million bits of memory and high execu-

tion time).

The following comments are quoted from the evaluation

report:

"Probably the best product of this type on the market

today, in terms of structuring a given FORTRAN program. Note

that even if the preprocessor is never used to execute the SFORTRAN

representation of a particular FORTRAN program, the SFORTRAN

listing can be an invaluable aid in determining what is going

on in a large and complicated program."

"The Structuring Engine has serious practical limitations

to go along with its sophisticated output, however, since a 1000K

load module size makes it rather machine dependent. Also, the

number of SFORTRAN lines starts to go up extremely fast as the

number of branch points in the FORTRAN program increases."

4.2.23 PACE (Product Assurance Confidence Evaluator)

a. Category - Testing Tool

* Test Completion Analyzer

* Dynamic Analysis

o Path Flow Analyzer

a Execution Analyzer (software probes)

* Optimizer (aid to manual action)

a Usage Counter

* Test Case Selection (aid)

* Static Analysis

4-65

V
* Path Structure Anal yzer (di rected graph

* Regression Testinq (aid)

1). SoUrceS

(1) TRW (Cataloq), Sof t.ware Tools Catalogue and Recom-

mendations, TRW, Defense and Space Systems Group, January 1979.

(2) Ramamoorthy, C. V. and 1Ho, S. F., "Testing Large

Systems with Automated Software Evaluation Systems," Proceedings

International Conference on Reliable Software, Los Angeles, CA,

April 1975, pp 382-394.

c. Status

The PACE quality assurance tool is a product of TRW

(SEID Software Product Assurance) and has been implemented on

the CDC 7600, CDC 6500, and UNIVAC 1108. Various versions of

PACE have been developed to meet the special requirements of

individual users.

d. Description

PACE is a collection of tracing and managerial tools o

which assist in assessing test coverage for FORTRAN programs.

Dynamic analysis includes the generation of software probes to

record the number of times each statement is executed. Static

analysis includes a segment transfer table, a segment description

table, and a program 'tructure summary which identifies and counts

the various kinds of FORTRAN statements.

The major purpose of PACE is to quantitatively assess

how thoroughly and rigorously a program has been tested with

the objective of testing every logical and arithmetic instruction

in every branch.

PACE also acts as a driver for the TRW FORTRAN Standards

Auditor (STRUCT)

e. Research and Findings (Source 1)

TRW reports that very large subroutines may overflow

internal PACE tables and very large programs may overflow core

due to the added instrumentat. ion.

4-66

IA

f. Maintenance Experience (Source 2)

The following report concerning experience with PACE

is quoted from Ramamoorthy and Ho:

"In testing and maintenance of the Houston Operations

Predictor/Estimator (HOPE) program, cost savings achieved by
the use of the PACE system was $8,000 per year. The PACE systemr
disclosed that the existing test file consisting of 33 test cases

covered only 85% of the programs and that one-half of this number

were exercised by almost every test case. It required 4.5 hours

of computer time and 35-50 manhours of test results evaluation.

Consideration of these statistics initiated the subsequent analysis

to produce a more effective test file. A file of six cases was

generated. With this set of test cases, 93% of the subprograms

were exercised and required less than 24 manhours of test results

examination."

4.2.24 RXVP (formerly RSVP - Research Software Validation

Package)

a. Category - Verification and Validation Tool, Testing

Tool

" Test Completion Analyzer

" Static Analysis

" Path Structure Analyzer

* Anomaly Detector

" Debug Tools -Cross Reference

" Dynamic Analysis

" Execution Analyzer (software probes)

" Path Flow Analyzer

" Variables Analyzer

" Usage Counter

" Test Data Generation (guidelines for manual data
preparation)

* Test Case Selection

4-67

*Restructuring Program (FORTRAN to IFTRAN)
*Test File Manager

o Test Status Reporting

b. Sources

(1) Miller, E. F. and Melton, R. A., "Automated Generation

of Test Case Data Sets," Proceedings International Conference on

Reliable Software, Los Angeles, CA, April 1975, pp 51-58.

(2) TRW (Catalog), Software Tools Catalogue and Recom-

mendations, TRW, Defense and Space Systems Group, January 1979.

(3) Ramamoorthy, C. V. and Ho, S. F., "Testing Large

Systems with Automated Software Evaluation Systems," Proceedings

International Conference on Reliable Software, Los Angeles, CA,

April 1975, pp 382-394.

(4) Gilb, T., Software Metrics, Winthrop Publishers,

Inc., Cambridge, MA, 1977, 282 pp.

C. Status

RXVP is an automated verification system and test case

generator developed by the General Research Corporation (CRC) .

RXVP applies to programs written in FORTRAN and IFTRAN, a struc-

tured programming extension of FORTRAN. It has been implemented

on CDC, IBM, and UNIVAC computers and is commercially available

from GRC.

d. Description

RXVP offers an organized approach to program testing

and guides the programmer in the systematic development of test

cases that ensure thorough test coverage. A detailed static

analysis of individual program modules and groups of modules

is also provided. The various options of RXVP are selected by

means of a comprehensive command language.

RXVP automatically performs a complete structural analysis

of FORTRAN programs and stores the results in a data base. Addi-

tional or changed source code causes the existing data base to

be updated. The detailed static analysis of individual program

modules and groups of modules includes:

4-68

" Statement classification by type of statement

" Number of statements in each module and percentage
of total

" Module cross reference table of variables, the
statements that reference the variables, and their
type of usage

" Check of array subscripts for indexing appropriate
to the definition.

The control structure of the source code is automatically

instrumented for dynamic analysis and statistics on program vari-

ables are recorded at the statement level during execution.

The internal program structure is used to identify a

minimal set of test case patterns which will comprehensively

exercise the program(s). The requirement is that every execut-

able statement and every possible outcome of each branch statement

be exercised at least once. A partitioning process is used to

identify a hierarchy of subschema within the program's digraph;

each subschema having a single entry and single exit. Appropri-I
ate aggregations of modules are then made and the iteration

structure for each is identified. Backtracking techniques are

used to recognize impossible paths and to generate specifications

for the input variables which will cause execution of the required

program flow for the test case. After the generated test case

is execiited with manually prepared test data and verified using
the instrumentation and data collection facilities of RXVP, the
process is repeated with another untested segment as the testing

objective. RXVP keeps track of the untested segments and reports

on the test coverage achieved. The effectiveness of the test

case data is verified by manual comparison with the system func-

tional specifications.

e. Research and Findings

(1) Ramamoorthy and Ho (Source 3) report that extensive

man-machine interactions are required for the testing of programs

and the test data preparation.

4-.69

(2) Gilb (Source 4) reports that RXVP was run on a

group of 26 programs that GRC programmers had approved as having

met the criteria that 100 percent of the test paths had been

exercised at least once and every possible outcome of each program

decision statement had occurred at least once. RXVP showed that

23 of the 26 programs had less than 80 percent of these paths

tested. Gilb states "This example illustrates the strength of

automated tools compared with well-intentioned humans" and recom-

mends that manual test monitoring and evaluation "should probably

be augmented by such aids."

4.2.25 JOYCE

a. Category - Verification and Validation Tool

" Static Analysis

" Path Structure Analyzer

" Debug Tools - symbol cross reference

" Variables Analyzer

" interface Checker

" Documentation Aid

b. Source

Stucki, L. G., et al, Methodology for Producing Reliable

Software, McDonnell Douglas Astronautics Company, March 1976,

NASA CR 144769, Two volumes.

c. Status

JOYCE is a static analyzer and documentation aid for

FORTRAN programs. it was developed by McDonnell Douglas,

Huntington Beach, California and has been implemented on CDC

computers.

d. Description

JOYCE is an automatic static analysis tool for FORTRAN

programs. It accepts as primary input FORTRAN source decks in

4-70

the form of card decks or CDC compile files. The source decks

are edited and the edited information is combined to produce

several combinations of descriptive reports.

JOYCE compiles tables of symbols and cross references

of symbol usage within each routine of a program. These symbols

include FORTRAN variable names, the names of any referenced func-

tion or module, any entry points, and all 1/O file references.

Flowlists are provided in the form of microfilm FORTRAN listings

with all transfers indicated by arrows to the right of the state-

ment text and all DO loops indicated by brackets to the left.

Symbolic descriptions may be input on data cards to

produce a completely cross-referenced program glossary. The

data cards may describe or designate a variable definition, a

mathematical symbol, flags for grouping related subjects, or sub-

routine usage information. The glossary may be listed on micro-

film in a variety of formats at a program and/or subroutine level,

and may be sorted on FORTRAN and/or mathematical symbol or any of

several special modes (e.g. by storage location).

e. Research and Findings (Stucki et al)

JOYCE was among the automated verification tools evaluated

under contract to NASA Goddard Space Flight Center (GSFC). The

operating cost was evaluated at 2 in a scale of 1 = low to 5

high and the ease of use was evaluated at 2 in a scale of 1

easy to 5 = difficult. JOYCE was not recommended for use at

GSFC because an IBM version was not available.

4.2.26 Semantic Update System

a. Category - Code Production and Analysis Tool,

Configuration Control

" Automatic Modification (aid)

" Configuration Status Reporting

" Support Library (System Master Library)

* Redesign Analysis

4-71

" Static Analysis (analyzes side effects of proposed
changes)

" Variables Analyzer

* Interface Checker

" Regression Testing

b. Source

Hirschberg, M. A., Frickel, W. G., and Miller, E. F., Jr.,

"A Semantic Update System for Software Maintenance," Proceedings

COMPCON Spring 1979, San Francisco, CA, March 1979, pp 307-309.

c. Status

The Semantic Update System is an automated software

maintenance tool for large-scale FORTRAN programs. The system

is in prototype development; however, some user exposure has

been obtained. Semantic Update is to be applied initially to

a hydro-dynamics simulation system.

d. Description

Semantic Update is described as "a tool that assists

in the incremental modification of software systems treated as

systew~s". It can be applied to a program part, an entire module,

a software subsystem, or an entire software system. The system

is language dependent and is not capable of handling data files.

However, it can determine the extent of side effects to proposed

or directed changes and provide trial updates to determine the

extent of side effects.

Ten classes of system commands have been identified in

the preliminary design for the Semantic Update system.

(1) Semantic Update system control commands for choosing

processing options, setting limits on side-effect scanning, etc.

(2) Single module modification commands having no

multiple module side effects, such as requests to change local

FORTRAN variable DIMENSIONality within a module.

4-72

(3) Single module modification commands having multiple

module side effects, such as SUBROUTINE name changes or formal

parameter type changes.

(4) Commands controlling the content of global program

declarations, such as addition, modification, or deletion of

items from a particular COMMON block.

(5) Software system module redefinition commands that

may be used for changing module names or formal parameter lists.

(6) Global macro redefinition commands for making modi-

fications to source-level macro definitions.

(7) Software system structure commands that permit

selection of an alternative module version from among a set of

nominally equivalent versions resident in the system master li-

brary.

(8) Semantic Update operations commands that are used

to control the system logic and values in conditional operations.

(9) Information storage commands for adding information

to the system development archive, such as annotations by system

maintenance personnel.

(10) System status report commands that initiate report

processing for presentation of status information, such as modules

listings and side-effect interaction levels.

In addition the system will process commands in different modes

based on "(1) the extent to which command-to-command interaction

is to be considered during a particular Semantic Update session;

and (2) the current limits placed on side-effect analysis".

e. Research and Findings (Hirschberg, Frickel, and Miller)

The authors cite estimation of an overal.l cost-benefit

ratio based on use of Semantic Update compared with conventional

update methods as an important requirement. This should be ac-

complished after significant user experience with Semantic Update

has been accrued. It is anticipated that Semantic Update will

provide measurable improvement in update capability and perhaps

will apply to some types of applications that could not be treated

by any other means.

4-73

4.2.27 FAST (FORTRAN Analysis System)

a. Category - Verification and Validation Technique

" Static Analysis

" Variables Analyzer

" Interface Checker

" Anomaly Detector

" Redesign Analysis

b. Source

Browne, J. C. and Johnson, D. B., "FAST: A Second Gen-

eration Program Analysis System," Proceedings Third International

Conference on Software Engineering, Atlanta, GA, May 1978, pp
142-148.

c. Status

The FAST FORTRAN analyzer is a specific purpose program

product which is built upon the use of existing general purpose

products. It uses the commercially available data management

system, System 2000 (MRI Systems Corporation) as its data handler

and data correlator along with the FACES source program parser
and the BOBSW parser generator. The developers of FAST propose

it as a model for the development of similar specific purpose

program products in the future, particularly since FAST was imple-

mented with only 3 1/2 man months of effort.

FAST is specifically designed for interactive usage.

There is no batch interface, but terminal output can be directed

to a line printer.

d. Description

The FAST system creates a data base of the attributes

of modules, statements and names in a FORTRAN program and inter-

actively processes a wide range of queries concerning these attri-

butes.

4-74

The FAST data base is generated from the FORTRAN source

program by using

0 the FACES parser

e a program to map the output of the parser onto
System 2000 load strings

o the System 2000 data management system.

The FAST command/query language, which is used to query

the data base, defines approximately 100 attributes of FORTRAN

names and statements. These attributes can be combined in logical

expressions to qualify or isolate very broad or very narrow pro-

gram contexts. The command language interpreter was implemented

through the use of the BOBSW parser generator (University of

Texas at Austin).

The FAST command/query language is used to request displays

of statements or variables which satisfy specified attributes

or a logical expression of attributes. The range of the query

may be program wide, intra-module, or within specified program

lines. Displays include

" The attributes of specified variables (such as type,
class, scope, and module environment)

" Variables satisfying a specified range of attributes

(such as DO-control variables or actual parameters)
" Statements satisfying a specified combination of

attributes (such as referencing selected statement
labels containing specified variables, or containing
variables used in a certain way)

" Variables which may be affected by a change to a
specified variable

" Trace of variables which may affect the value of
a specified variable

" Improperly aligned parameters

" Improperly aligned COMMON blocks

" Uninitialized variable-,.

4-75

e. Research and Findings

Browne and Johnson report that much of FAST's power

and flexibility as well as its low cost of implementation derives

from the use of a general purpose data management system as an

integral component. FAST's capabilities are designed to be

especially well suited to the program maintenance environment

as well as for program development and debugging. The authors

state: "The capability for qualifying and isolating segments

of program text by association with key attributes should be

particularly valuable in the program maintenance environment

where the programmer/analyst will not usually be familiar with

the local program context and associations".

4.2.28 ASSET (Automated Systems and Software Engineering Technology)

a. Category - Integrated Verification and Validation Tools

(Requirements, design, and code)

" Redesign Analysis

" Configuration Status Reporting

" Support Library

" Requirements Determination

" Pseudo-code (requirements and design languages) 1i
" Utilities

* Static Analysis

" Symbolic Execution

" Dynamic Analysis

b. Source

Osterweil, L. J., Brown, J. R., and Stucki, L. G., "ASSET:

A Lifecycle Verification and Visibility System," Proceedings COMPSAC

1978, Chicago, IL, November 1978, pp 30-35.

4-76

C. Status

Development of a system implementing the ASSET architecture

is currently underway at Boeing Computer Services Company. Early

efforts are focusing on implementation of key analytic capabilities

and front ends to process requirements, design and specific coding

languages. The manipulative functions for the integrated data

base are also being developed.

d. Description

ASSET is an integrated system of tools and techniques

which is designed to facilitate the transition from one develop-

ment phase to the next and to determine that the transitions have

been made correctly. Upgrading the system in the maintenance

phase is considered to be a reiteration of the development phase

(requirements analysis, preliminary design, detail design, and

code). Testing and verification are considered to be a continuing

activity throughout the development (or maintenance) process

rather than a separate phase.

The principal component of ASSET is a central data base

containing all of the information needed for making and implementing

management decisions about a program, including

" Source code

" object code

" Documentation

" Support libraries

" Project utilities

" Requirements speci"ications

" Desiqn specifications (all available levels)

Incoming source representations (code, design specifi-

cations or requirement specifications) are first scanned by a

static analyzer using graph analysis techniques. (DAVE is men-

tioned as an example.)

4 -.77

Symbolic execution is applied to the design and require-

ments specifications. Although the technique is applicable to

source code, the cost is considered to be too high for source

code verification.

Dynamic analysis is considered to be the more successful

verification technique for source code. (PET is mentioned as

an example.) This approach can also be applied to simulated

processes which model early requirements and analyze their inter-

actions.

Formal verification is offered as an option which is

expected to be most effective at the higher levels of require-

ments and design specification. In formal verification the com-

plete definitive functional effect of an algorithmic specifi-

cation is determined and compared to the complete definitive

statement of the program's intent. The determination of effect

is made by symbolically executing every algorithmic path.

4.2.29 System Monitor

a. Category - Redesign, Code Production and Analysis Tool

* Automatic Recovery

* Automatic Modification

" Comparator

" Redesign Analysis

" Debugging Tools - interactive

" Automatic Reconfiguration

b. Source

Yau, S. S., Cheung, R. C., and Cochrane, D., C., "An

Approach to Error-Resistant Software Design," Proceedings Second

International Conference on Software Engineering, San Francisco,

CA, October 1976, pp 429-436.

4-78

C. Status

Exact status of this maintenance toot is not identified

in the source article. However, it might be inferred from the

information presented that System Monitor is operational at

least in a prototype state and that it has been applied to opera-

tional application software systems.

d. Description

System Monitor is a .oftware system which has been devel-

oped to provide error detection, error containment, and func-

tional recovery support to applications software at the proqram,

module, and system levels. It is comprised of five components:

Internal Process Supervisor, External Process Sipervisor, Inter-

action Supervisor, System Monitor Kernel, and Maintenance Program.

These components and their functions are described as follows:

(1) Internal Process Supervisor. Ono Internal Pro-

cess Supervisor (IPS) will be created for each

internal process of the .pplication software to

be monitored. The IPS contains two components,

the Program Supervisor and the Module Supervisor,

that will check the process for reliable execution.

The Program Supervisor monitors control and data

flow between modules. The Module Supervisor checks

module functional reliability. Upon detection

of an error or software failure, global data values

are saved and alternate versions of modules are

called in during recovery attempts.

(2) External Process Supervisor. The programmer creates

one External Process Supervisor (EPS) per qlob9,

data structure. The EPS determines if program

modules have access to reliable data. The EP7

is composed of error detecion routines, recovery

data, and abstracL data types support tacilitios.

Detectin of an frror causes initiation of attempts

at alternate module access, error correction or

data -epair by EPS.

4-79

(1) nteorac t in Supie r visor 'I(Ih In t erac t ion Supe t viso r

(1S) mon it ors-- and con t rols qox t ernalI process i nter -

acti ons- to enst: LItre the r0eI i abilIi ty Of these inter-

act i on- . Thel(TS fi rst val idates i nteract ions,

then prov ides fac iIi t ies f or val idated i nteract ions

and f i nal Iy Super(tV i SeS the1 i nteract ions . For

fa i l ure of an Iinte ract i nq process , t he I S coordi -

ni t-es, r ecover y -imong thle i nteract i n processes.

(4) Svstem Mon itor K~ernel. The System Moni tor Kernel

is respons hil1e for checki ng the i nteqr i t y of the
Process Monitor and thUS, enS Ur inq thle i ntegr it y

of Sys-teml Monitor itself.

5~ Ma int ena nce Pr ogram . Thre Ma i ntenance Proqtram

is a p~it of) thle Sys--tem Monitor operating system

3ind is executed to at tempt repa ir of faul ty systeml

prI-Ce IS.;ei (. it compares failed sof tware and data

to backpcoief- Of -ode and data, and Uses some

i tetruac t iNo debwq capabi it ivs* The covvected

the S.teml Mon i tor

e . Heseoarc) aInd Vi od inqs- (Yau , ('hounti, and C'ochr ane)

The authors p~oint out thact Systeml Monitor doesips

certain overhead cost., through it:; i ntei nal and external inter- I
faces , state say inq process e-,(; for recovery , and error det ec tion

Fur ther res-earch i.s- planned in order to improve System

Mnntor per form ance and dlevel op more effective test-s and r eco'e r v

techin i (]le!-5

4 S

4.2.30 Reliability Measurement Model

a. Cateuiory - Operations Evaluation Tool

" Failur. Data Analysis

" 'rest Completion Analyzer

b. Sou r ce

Musa, John D., "Software Reliability Measures Applied

to System Engineering," Proceedings AFIPS Conference, Volume 48,

AFIPS Press, Montvale, NJ, pp 941-94 r .

c. Status

A portable FORTRAN program for measuring software

reliability is available on magnetic tape from John D. Musa,

Bell Laboratories, Whippany, New Jersey. A feedback of the

data collection (with appropriate safeguards) is requested

for use in refining and improving the reliability theory.

The proqram can be run interactively or in batch

mode on most larqe computer systems.

d. Description

Mean-time-to-failure (MTTF) i§ a useful metric for

characterizing system operation and for controlling change

during the maintenance phase. An automated model has been

developed using a number of fundamental equations which relate

failures experienced, present MTTF, MTTF objective, and time

required to meet the MTTF objective. The model requires the

input of the execution time intervals between experienced

failures, the MTTF objective and a parameter describing the

environment.

The model can provide a quantitatively-based mechanism

for change control in the Operations and Maintenance phase.

Generally, the MTTF will drop after the installation of software

changes and improve during the following period of error removal.

If the MTTF can be tracked and if MPTF service objectives can be

4-81

i~

set for the system, the model can be used as a tool for the man-

agement of system modifications. When the MTTF falls below the

service objective, the system can be frozen until improvement

occurs. The manager may use the amount of margin above the ser-

vice objective as a guide to the size of the changes permitted

at any given time.

e. Research and Findings (Musa)

The reliability theory has been applied to several

software development projects and operational systems. It

can be used in system engineering, test monitoring, and change

control of operational software. Experience in application

of the theory should lead to its further refinement and broaden-

ing, resulting in greater accuracy and wider utility.

4.2.31 FACES (FORTRAN Automated Code Evaluation System)

a. Category - Verification and Validation Tool

* Static Analysis

* Path Structure Analyzer

* Anomaly Detector

* Variables Analyzer (intramodule)

* Interface Checker

* Standards Enforcer

" Debug Tools - cross reference

" Reachability Analyzer

* Regression Testing (aid)

* Automatic Documenter

b. Sources

(1) Ramamoorthy, C. V. and Ho, S. F., "Testing Large

Software with Automated Software Evaluation Systems," Proceedings

International Conference on Reliable Software, Los Angeles, CA,

April 1975, pp 382-394.

4-82

(2) Browne, J. C. and Johnson, i). B., "FAST: A Second

Generation Program Analysis System," Proceedings Third Inter-

national Conference on Software Engineering, Atlanta, GA, May

1978, pp 142-148.

(3) TRW (Catalog), Software Tools Catalogue and Recom-

mendations, TRW, Defense and Space Systems Group, January 1979.

C. Status

FACES is an ANSI FORTRAN analysis program developed

for the Marshall Space Flight Center, and is commercially

available from COSMIC, University of Georgia. The system

is composed of a front end consisting of 6,000 source state-

ments and a collection of diagnostic and interrogation routines

consisting of 2000 source statements.

FACES is designed for transferability among machines

and has been implemented on the UNIVAC 1108, the CDC 6400,

and the IBM 360/65.

d. Description

FACES 1. a FORTRAN static analysis system consisting

of three parts: the FORTRAN front end, Automatic Interrogation

Routine (AIR), and a report generator.

The FORTRAN front end constructs a data base Zrom

the program source code. The data base consists of three

main tabules: a SYMBOL TABLE which contains an entry for each

symbol in the module along with its type, a USL.GE TABLE which

contains an entry for each occurrence of a symbol along with

its associated usage and a NODE TABLE which identifies the

type of each statement and its logical predecessors and successors.

Each of these tables contains explicit pointers to the others

for efficient movement among the entries.

4-83

The Automatic Interrogation Routine (AIR) interprets

queries and automatically searches the data base. The user

may query the entire system or an individual routine, by variable

names or by lists of attributes. AIR can be used to check

for:

" Error prone constructs, such as calls to sub-
routines which pass explicit constants as
parameters.

" Interface

--To verify that all COMMON blocks with the same
name have the same number of elements and that
corresponding elements agree in type and dimen-
sionality. Optionally, corresponding elements
may be checked for agreement in name.

--To verify agreement between the formal parameter
lists of routines defined within the program and
the actual parameter lists used to reference those
routines. Actual parameter lists must agree in
argument number, type and, optionally,
dimens~ionality.

" Redundant and unreachable code

" Loop construction and termination

* Coding standards

" Uninitialized variables (checks are limited to
local variables within a module).

A variable trace routine displays for a given variable, at

a particular line in a program module, either those variables

which have affected its value up to that line or those variables

it will affect after that line. The trace is limited to local

variables within a module.

The FACES data base can also be used for documentation

generation, including cross reference tables (variable versus

statement and COMMON block versus subroutine) , a subroutine

calling sequence table, and a program qraph.

4-84

e. Research and Findings - Source (1)

(1) Design

The FACES system is designed to provide automated

maintenance support as well as program development support.

Maintenance support is based on documentation generation and

interrogation of the data tables of program characteristics.

The maintenance applications include:

" Aid in predicting the effect of proposed
changes

" Validation of the modifications

" Aid in the selection of test cases for retesting.

(2) Validation Experience

FACES has been used to evaluate other software

systems, and has also been used to analyze itself on subsequently

developed versions.I
while analyzing AIR by FACES, the following

errors were discovered:

e Three instances of misspelling of variables

and one instance of transposition of variables in COMMON block

declaration were detected by the Common Block Alignment Check.

*Two subtle keypunch errors that changed the
names of two variables were detected as uninitialized variables.

4.2.32 Optimizer II

a. Category - Code Production Tool

e Optimizer

b. Source

TRW (Catalog), Software Tools Catalogue and Recon-

mendations, TRW, Defense and Space Systems Group, January 1979.

c. Status

Optimizer II is an automatic optimizer for ANS COBOL

programs on the IBM 360/370. It is commercially available

from the Capex Corporation, Phoenix, Arizona.

d. Description

Optimizer II is included in this report as an example
of tools which automatically optimize the performance of computer

programs.

Optimizer II automatically improves the efficiency

of the object code generated by the IBM ANS COBOL compilers.

Its object level analysis provides savings in main processor

time and main storage requirements which cannot be obtained

at the source-code level.

e. Research and Findings

TRW reports that savings of up to 25 percent in execution

time and 20 to 30 percent in memory requirements may be achieved.

4.2.33 CASEGEN

a. Category - Testing Tool

" Test Data Generation

" Test Case Selection

" Symbolic Execution

b. Sources

(1) Ramamoorthy, C. V., Chen, W. T., Han, Y. W.,

and Ho, S. F., "Techniques for Automated Test Data Generation,"

Proceedings Ninth Asilomar Conference on Circuits, Systems

and Computers, Pacific Grove, CA, November 1975, pp 324-329.

(2) Ramamoorthy, C. V., Ho, S. F., and Chen, W. T.,

"On the Automated Generation of Program Test Data," TEEE Trans-

actions on Software Engineering, Volume SE-2, November 4,

December 1976, pp 293-300.

4-86

c. Status

CASEGEN is a prototype test data generation system

which has been designed as a part of the FORTRAN Automated

Code Evaluation System (FACES) described in Paragraph 4.2.31.

d. Description

CASEGEN is designed to generate test data automatically

for testing FORTRAN programs. It consists of four major sub-

systems:

" FORTRAN source code processor (FSCP)

" Path generator

" Path constraint generator (PCG)

" Test data generator.

FSCP generates a data base consisting of the program graph,

the symbol table and the inte'rnal representation of the source

code. The path generator, by partitioning the program graph,

generates a minimal set of paths to cover all edges. (Some

of the generated paths are infeasible.) The path constraint

generator uses symbolic execution to produce a set of equality

and inequality constraints on the input variables. The test

data generator creates a set of inputs which satisfy the con-

straints and can be used to execute the program path. The con-

straints are solved by means of random number generation and

systematic trial and error procedures, with values being assigned

to program variables until all constraints are satisfied.

A user-oriented language has been designed to allow

the user to specify additional information about the program

such as upper and lower bounds of input variables, number

of loop iterations and relations among program variables.

e. Research and Findings - Source (2)

CASEGEN is undergoing further testing and tuninq.

Determining the number of loop iterations is still a major

obstacle and user assistance is sometimes necessary.

4-87

4.2.34 Testing System

a. Category - Testing and Integration Technique

" Automatic Test Driver

" Test Case Selection

" Test Completion Analyzer (aid to user analysis)

" Test Status Reporting

" Test Data Generation (through programs designed
specifically for the system being tested)

" Interactive Execution

* Debug Tools - d~umps, etc.

b. Source

Cicu, A., Maiocchi, M., Polillo, R., and Sardoni, A.,

"Organizing Tests During Software Evolution," Proceedings Inter-

national Conference on Reliable Software, Los Angeles, CA,

April 1975, pp 43-50.

c. Status

Testing System (TS) is operational in prototype form

with a limited set of functions being exercised. It has been

used to monitor testing of the Honeywell GCOS Level 62 operatingF
system. TS is specifically designed as an aid to organizing

tests for operating systems which are undergoing modification

for every new release. However, the concepts for automated

testing are generally applicable to any software which is

undergoing extensive maintenance.

d. Description

The source authors describe Testing System requirements

in terms of system adaptability and expandability. That is, a

testing system should be able to "locate areas where testing

activities cannot be pursued any further", (for example, where

a fault has been detected but not yet repaired), and adapt

system testing to alternative areas. Also, as the operating

system which is being tested experiences modifications a testing

4-88

system must be capable of 3ddinq new tests and altering or sup-

pressing existing tests through easily implemented increments

or changes. With these requirements in mind the TS is beinq

developed into a highly structured and, to the extent possible,

automated system.

The automatic testing is performed primarily through

the execution of testing programs which are activated from a

hierarchical "catalog" of testing programs accoruinq to the

specific catalog structure or to operator requests. Within

each testing program, dependent modules are activated according

to the outcome (success of failure) of the previously executed

module or to operator requests. When actual test results do not

match the expected results, messages are issued to help locate

the error and debug tools are activated.

The TS contains the following components:

Testing Modules and Testing Programs.

A testing module is a code segment structured with

one entry and one exit point. it is designed to test one

well-defined feature of the system. Testing modules make as

few assumptions as possible about the operating system internal

structure, are self-documenting, and are portable.

Modules which test related features of the system are

grouped to form a testing program. The testing program is a job

step which is activated from within job control language (JCL)

procedures.

Mutual dependencies among modules within a testing

program are described by means of a module dependency graph.

Two dependency situations are typical:

" Two testing modules are independent and can be
executed in any order

" Two testing modules are sequenced and one can
be executed only after successful completion of
the other.

4-89

The TESTER (Testing Modules Handler)

The TESTER routine scans t-he dependency graph and

controls execution of the testing modules according to the

outcome (success or failure) of the previously executed module

or to operator requests. TESTER can stop execution when unsuc-

cessful runs occur at key points, bypass blocked modules, execute

a single module, execute a particular module and all previous
modules required for its execution, issue messages defined by

the programmer to describe the purpose of the test and issue

messages on the overall results (success or failure) of the test.

Testing Units

Testing units, the JCL statements which activate

and contro~l the testing programs and test data generator

programs, are the smallest meaningful entity in the management

of testing activities. Testing units perform disc preparation,

files preallocations, etc., prior to execution of a testing

program and provide messages and dumps if the test fails.

Test results which cannot be checked automatically are inter-

actively communicated to the operator. Testing units, like

the test modules, are designed to be self-documenting and

portable.

Testing Structure

The testing structure is a hierarchical catalog of

all testing units for the system, organized according to the

area of testing activity. Testing structures are defined

through graph notation, similar to the module dependency graphs,

to establish testing unit dependencies.

HLTESTER (Testing Unit Handler)

The testing unit handler (HLTESTER) scans the testing

structure, monitors the execution of testing units, and selects

the next testing unit according tc' the results of the previous

execution and/or to operator requests. That is, it performs

4-90

essentially the same services as TESTER, but at a higher linquistic

level.

Data Base

The data base was not implemented at the time of the

source article. The primary objective of a data base is to pro-

vide automatic test documentation and a capability for review V

of testing activity status at any desired level of detail. The

criteria stated for organizing a data base are that it reflect

the hierarchical structure of the TS and that it be capable of

being updated directly at any level with test results.

e. Research and Findings (Cicu, Maiocchi, Polillo, and

Sardoni)

The authors report that completing a comprehensive

set of operating system tests under control of a TS was diffi-

cult because: testing coordination problems existed among dif-

ferent development groups, tests to check job-man3gement func-

tions cannot be monitored from within a job, and all operating

system features required to support TS operation were not available

with early system releases. As a result of these difficulties

the TS was implemented in a bottom-up approach typically beginning

with test module and test data generator design. Also, the

requirement for a test unit handler and data base is created

only after a "relevant number of tests is available" and those

tests have been effectively used.

Use Of TS is said to improve system maintainability

and simplify test activity management.

Future research will be devoted to increasing maintain-

ability factors and reducing the clerical overhead required for

release management by expanding the data base content.

4-91

4.2.35 ISMS (Interactive Semantic Modeling System)

a. Category - Verification and Validation Tool

" Execution Analyzer (software probes)

" Dynamic Analysis

" Static Analysis

" Path Structure Analyzer

" Variables Analyzer

" Interface Checker

" Assertion Checker

" Path Flow Analyzer

* Usage Counter

" Timing Analyzer

b. Source

Fairley, R. E., "An Experimental Program Testing Facil-

ity," IEEE Transactions on Software Engineering, Volume SE-I,

November 4, December 197', pp 350-357.

c. Status

ISMS is an experimental research tool for static and

dynamic analysis of computer programs. It is designed to permit

rapid implementation of a variety of tools for collecting,

analyzing, and displaying testing information with the purpose of
determining the most useful types of information and the most

meaningful way to display that information.

At the time of the source article, ISMS was partially

implemented. Programs written in ALGOL 60 were being used

for the experimentation, with a FORTRAN version in progress.

d. Description

ISMS establishes a data base from the static analysis

of the program structure and the dynamic analysis history

of one or more program executions. The data base is accessed

by means of "semantic models" of program execution which display

the program behavior in either the control flow domain or the

4-92

data flow domain. The data base may be accessed in either hatch

or intetoictive mode.

The ISMS jreprocessor performs syntactical analysis

of the program text to record th- structural attributes of

the program in the data base and instruments the source code

with subroutine calls to collect the execution history.

Execution of the instrumented program collects all

or a specialized part of the program's execution history.

Symbol names are interfaced with data values and program text

is interfaced with flow of control. The history of program

events (any change in the computational state) may be collected

by type of event, such as the sequence of subroutine calls

through the entire execution, or region of event, such as

data flow And control flow in a given segment. If collcction

criteria are not specified, all events for the entire execution
are collected.

Displays from the data base allow each step in the

execution history to be reconstructed either forward or backward.

Backward interpretation permits analysis of how a given computation

was influenced by previous computations. Also, the entire

execution history can be scanned to collect global information

and summary statistics. The types of information available

for display include:

* Program graph structure

e Overview of source code structure

e Ranges of variables

o Statement execution counts by statemcnt type or
statement number

e Branch execution counts

e Control flow traces and tracebacks

o Data flow traces

9 Data sensitivity analysis (the etfects of input
data inaccuracies and finite word length on the
computation being performed)

4-93

* t.1"kiiteri(' chock!'

0 PaI a1111t (,I-~; i nkqo1 evIoirnmen 11 8

0 '1 V i i I Iq e ,;t iIl mat t, s

* A.-;:,,t t ion1 QP'C

" Dathia Vad i h) 8 01 Val a ('8c oip 't e Ol i8)1ctVeC

" Dependenc'e of dat a v -I It~ on oth11er dat a- Va I] I e8!7

e Rw.-,ea Ich 1111 V' i lid i 18(V 0a ii te y)

Fa i Ie y 8ta at till ht " thet i mport ant des8 t(11 fea t-ure8s

(it t tI 1MS, atIIo: I) t he -,nt-ax (I r i venf natntite of thIie p r eprotc)c e s c

2) the) i ,.o I a t ionl o t d1-it a co 1 ec t i On frI-om d 11t a a na I vsi !8 a nd d i s -

play; and 3) tithe independence of the collIect ion, analy\'8 8, and

d i 8-pl ay Ion (-it i' e t reom thle inltevrnalI doetail 1 of (Ia t a ha se impll I v-

meTtat en ma ild i 8a kvalnt avi of I Sms i 8 the pot ellt i a 8

I a I q e zet o Ith1,df t a e . ettermininq te (xtentofti

*1 1)10Weni i!-, in importlant aupect of t1 he centini nq Iresealrch.

4 .2. 1(, Compiter PI okiiam '1'an.t otmat ion

a . . at ek oty - RoIde 8 i q Il, aInd C('oe Pr-odlnet ion a nd Anal1ysis8

o Ant omat ic Mod i f i cat i ot

o ee;q Anal y.,;i

0 ('ode, (omplIar at or1

0 Opt i Ii i zer

(I I Io yIe, a . , ad Ma it z ,M. A Lint oma t i n q Mnl 1 t ipl J
Ill oeI am Real iziat i n ', oceed inq 8, MR I Sympo8 ilnm on1 Compnute r

S'of twal t, Einq i neer itnq, New York, NY, Apt-il1 1 QV76 , pp 4211 -.440.

D)1er fliow i t z , N. , and Manna , 7. . Th Evol tit ion

o t P I o (Ia im; Aut omlat i c(Il Potqam Mod if i cat iori, 11.11 T1 an.,iact i ons;

on ,;() twarev Eno i never i nq ,Volunme F- I Nnmber 0, Novembere 1 ')77

pp 17 7- I R'

(3) Arsac, J. J., "Syntactic Source to Source Transforms

and Program Manipulation", Communications ot the ACM, Volume 22,

Number 1, January 1979, pp 43-53.

c. Status

Program transformation as described in the source

arLicles has been implemented through both automated and manual

procedures. These articles present program transformation

as a methodology with significant potential for improving

program redesign and production capabilities both for development

and maintenance functions. Automated procedures have been

realized through the Transformation-Assisted Multiple Program

Realization (TAMPR) system developed at Argonne National Laboratory.

Both manual and semiautomated (using interactive softwa:e

support) procedures have been implemented to achieve program

transformation.

The systems described in the source articles are

presented as prototype or experimental systems. In general

they are discussed in the context of their application to

a limited range of program transformation environments.

d. Description

The techniques of program transformation as presented

by the source articles evolve from the following concepts:

" Achieve economics in the application of valid

softwarp routines within multiple hardware
environments by automated transformation of the
source statements.

e Extend program capabilities by automatically

modifyinq the proqram process to produce new
or expanded output.

" Reduce proqram complexity throuqh syntactic
and semantic soLrce to source transformation
of program code.

The automated transformation system TAMPR is described

as "a proqram manipulation system which permits one to describe

(and to automate) the construction of different realizations

--F,

of the same prototype program by means of source-to-source 1

transformations" (Source 1). The authors propose that certain

well-defined, automated processes (such as mathematical routines)

may be economically extended to alternate program realizations

through automatic transformation. Thus, a validated routine

implemented on one processor may be transformed to an alternative,

valid routine to run on a different processor. Source 1 describes

in detail the application of TAMPR to transformation of a set of

linear algebra modules. As discussed in this article, TAMPR

operates on routines written in FORTRAN.

Automatic program modification is based upon finding
"oan analogy between the specifications of the given and desired

programs, and then transforming the given program accordingly"

(Source 2). Global transformations are emphasized; that is,

transformations in which all occurrences of a particular symbol

throughout a program are affected. This process may be auto-

mated and has been implemented in the high level language QLISP.

As described in the source article the modification process con-

sists of eight steps in three phases:

so Premodification Phase

(1) Annotation of the given program. Establish
invariant assertions such as relation between
input and output variables.

(2) Specifications rephrasing. Express the given

and desired program specifications in equivalent

form.

*Modification Phase

(3) Analogy definition. Develop transformations

that yield desired program specifications

from given program specifications.

(4) Modification validity determination. Check

verification conditions and develop any ad-

ditional transformations needed to preserve

program correctness.

4-()6

(5) Transformations application. Apply transfor-

mations to given program.

(6) Unexecutable statements rewrite. Incorrect

variable assignments and non-primitive expres-

sions must be replaced.

e Postmodification Phase

(7) New segment synthesization. Introduce new

code where necessary to complete the new

program expression.

(8) Transformed program optimization. optimize

all new properties of the transformed program.

Automatic program modification may be applied as

a program debugging tool to develop a new program realization

when errors prevent the old program from operating according

to specifications.

Source code transform using syntactic and semantic

manipulation is presented as an effective technique for creating

a "clear, simple and reasonably efficient" program. Syntactic

transform is implemented using catalogs of known syntactic

transformation properties. By applying certain of these along

with selected local semantic transforms a new realization

of a given program can be achieved. The goal for this transfor-

mation process is to create less complex program realizations.

The Source 3 author reports that this technique has

been implemented through an interactive system written in

the high order language SNOBOL. A detailed presentation of

the syntactic and semantic transform methodology is given

in Source 3.

e. Research and Findings

(1) Boyle and Matz (Source 1)

The authors state that TAMPR does provide automated

program manipulation and transform notation for aiding construction

of related program realizations. By extending the validity of a

4-97

particular program to a set of related (transformed) programs

the testing requirements for these programs can be signifi-

cantly reduced.

(2) Arsac (Source 3)

Program manipulation is presented as a "worthwhile

tool" where program efficiency is important and for creation of

uncomplicated programs. In the view of the author more experi-

gientation with the tool remains to be done in order to develop

a better understanding of the methodology and its interactive

i.plementation.

4.2.37 Numerical Software Testbed

a. Category - Testing Technique

* Testbed

* Static Analysis

* Formatter

* Variables Analyzer (symbol table)

* Dynamic Analysis

* Execution Analysis (software probes)

e Path Flow Analyzer

* Usage Counter

* Test Data Generation (guidelines)

* Completion Analyzer

* Automatic Driver (special test program for each
routine to be tested)

b. Source

Hennell, M. A., Hedley, D., and Woodward, M. R.,

"Experience with an ALGOL 68 Numerical Algorithms Testbed,"

Proceedings MRI Symposium on Computer Software Engineering, New

York, NY, April 1976, pp 457-463.

4-98

c. Status

The Numerical Algorithms Group (NAG) library consists

of approximately 300 numerical algorithm routines in both

FORTRAN IV and ALGOL 60, with a lesser number in ALGOL 68.

The library is available to all British universities and a

number of other universities, covering the equipment of five

major manufacturers. Each routine has associated with it

a stringent test program and a results file so that if a fault

or an incorrect implementation is suspected, the results produced

by the stringent program can be compared with the expected

results. All new routines are subjected to testbed analysis

as an integral part of the normal code auditing and val-idation

process. The analysis is not intended to test the numerical

algorithm itself (NAG has a separate validation process for

that purpose) , but rather to rigorously exercise the program

code.

d. Description

The term testbed is used in analogy with aeronautical

procedures, where the engine is tested exhaustively on a testbed

to determine its operating characteristics. The testbed was

orginally designed to study run-time performance and consists

of three major components: a static component, a dynamic
component, and an analysis component displaying various aspects
of the execution history.

The static component performs sta'Cic analysis of

FORTRAN or ALGOL source code and collects statistics, including

the identification of all possible program jumps. The FORTRAN

analysis also gives statement count by type, annotates the

source code and constructs a symbol table. The ALGOL 68 analysis

reformats the source code so that each part of choice clauses

(such as IF ... THEN ... ELSE ...) is on a separate line.

The program is then run with a modified compiler

which stores the run-time execution history in a data base.

4-99

The events monitored are jumps, subroutine entry and exit,

predicate values, assignment values, and loop entry and exit.

The events monitored can be freely switched on and off at

any point within the testing program.

The analysis of the data base can be carried out

in interactive or batch mode. Typical information produced

by the analysis includes statement execution frequency counts,

jump execution frequency counts, a trace of control flow,

and a breakdown of the executed paths. In interactive mode,

the execution history can be interrogated in either a forward

or backward direction so that the control flow sequences which

reach a particular point may be investigated.

Each NAG routine is tested with its associated stringent

test program which attempts to exercise each statement and each

program jump at least once. A jump is defined as occurring

when the line number of the next (reformatted) statement differs

from that of the current executable statement by other than +1

or 0.

e. Research and Findings (Hennell, Hedley and Woodward)

The authors have found that:

(1) The testbed analysis of the stringent tests is of

great value. Certain goals, such as the execution of every

statement in a large body of code, become realizable only

through the automated testbed tools.

(2) The testbed does not directly detect program bugs

but does focus attention on areas of code, such as unexecuted

code, where undetected bugs may be present.

(3) The results of the dynamic analysis provide

the most effective guidelines available for obtaining better

tests.

4-100

f. Maintenance Experience

(1) FORTRAN and ALGOL 60 routines were translated

into ALGOL 68. The testbed was then used to exhaustively

test the ALGOL 68 programs. Analysis of the unexecuted state-

ments and attempts to derive test data to exercise these state-

ments, revealed a number of previously undetected program

bugs in the ALGOL 68 versions and provided new insights into

the requirements for test data generation.

(2) The stringent test program associated with each

rcutine in the NAG library is a part of the standard maintenance

process. The goal of the stringent test is to exercise every

statement and every possible program jump at least once.

The stringent test program is used in corrective maintenance

when a fault is suspected and in adaptive maintenance to verify I

that implementation on a particular machine is correct.

4.2.38 TPL/F (FORTRAN Test Procedure Language System)

a. Category - Testing and Integration Technique

" Automatic Test Driver

" Test Procedure Language

" Completion Analyzer

" Stubs

" Assertion Checker
" Output Processor/Analyzer

* Test Status Reporting

" Dynamic Analysis

" Usage Counter

" Regression Testing

b. Sources

(1) Panzl, D. J., "Test Procedures -A New Approach

to Software Verification," Proceedings Second International

Conference on Software Engineering, San Francisco, CA, October

1976, pp 477-485.

4-101

(2) Panzl, D. J., "A Language for Specifying Software

Tests," Proceedings National Computer Conference, Anaheim, CA,

June 1978, pp 609-619.

c. Status

The FORTRAN Test Procedure Language (TPL/F) was devel-

oped by General Electric at their Schenectady, New York facility.

It is used by GE to specify test procedures for FORTRAN software.

The TPL/F system is designed to provide software verification for

FORTRAN programs, however, the concepts upon which this approach

was developed are not language specific, and could be used for

languages other than FORTRAN.

d. Description

The TPL/F system automatically executes software test

cases and verifies the test results. A formal test procedure

coded in a special test procedure language (TPL) is used to

describe the test cases and control an automatic test driver.

The test procedure takes the place of the test data and test

setup instructions of conventional testing and provides a

standard format for software test specification.

A test procedure specifies one or more test cases r

which cause actual execution of a target subprogram, module,

or group of modules. Stub versions of missing subprograms

are coded in FORTRAN-like statements embedded in the test
procedure. Typically, a test procedure for a FORTRAN module

of 50 to 100 statements may contain 20 to 50 test cases.

To reduce the notation required to represent a test case,

the TPL/F system uses a built-in macro processor and each

specific test case uses a single macro call. The test procedure

approach permits a great deal of freedom in executing either

module, integration, or regression testing.

Test cases consist of execution instructions, input

values, and model output values for the program to be tested.

Execution instructions specify where to begin and where to

4.-i102

terminate a test case execution and how many times to execute

it. A VERIFY statement is used to specify an assertion about

the target program which can be checked at a given point in

the execution.

The automatic software test driver applies a test

procedure to one or more program modules, executes the specified

test cases, verifies that the results of each test are correct,

and reports the degree of testing coverage achieved.

Execution of TPL/F test cases is accomplished in

three steps. First, the target progzam is initialized using

initialization code within the test procedure to assign initial

data values. Second, target program execution occurs. The

range of execution is governed by the execution directive

that appeared in the test definiti'on. Third, upon termination i
of execution the execution states are verified in accordance

with the specified assertions. Results of the verification

process are produced in the form of a test execution report which

contains execution success/failure information and data on the

percentages of target program statements and branches executed.

e. Research and Findings (Panzl)

The author expresses the opinion that implementation F

of the TPL and test procedure concept may improve the quality

of software test design. This is likely because now software

tests may be formalized in executable and readable form. Through

use of the automatic test driver, software testers can receive

feedback on the degree of testing thoroughness. The importance

of automatic test drivers and formal test procedures to the

maintenance of production software is also cited. Now, test

cases may be retained over the entire life-cycle of the software.

This means that post-release test results of the software

can be automatically compared with pre-release test results

and the impact of post-release program modifications can be

assessed.

4-103

4.2.39 DATFLOW (Data Flow Analysis Procedure)

a. Category - Testing and Integration Tool

" Variables Analyzer

" Static Analysis

" Path Structure Analyzer

" Reachability Analyzer

b. Sources

(1) Allen and Cocke, J., "A Program Data Flew Analysis

Procedure," Communications of the ACM, Volume 19, Number 3, March

1976, pp 137-147.

(2) Osterweil, L. J., "A Methodology for Testing

Computer Programs," Proceedings Computers in Aerospace Conference,

Los Angeles, CA, November 1977, pp 52-62.

c. Status

The DATFLOW data flow analysis tool has been implemented
and used in a PL/I oriented Experimental Compiling System. A

PL/I listing of the procedure is available from th- source

article.

d. Description

The DATFLOW procedure determines data flow relationships

within a program by a static, global analysis. Definition- I
use ("def-use") relationships are expressed in terms of the

control flow graph of the program.

A data definition is an expression or part of an

expression which modifies a data item. A data use is an expres-

sion or part of an expression which references a data item with-

out modifying it. For a given data definition, DATFLOW identifies

the uses which will be affected. For a given use, DATFLOW

identifies the data definitions which supply the value. The

procedure also identifies "live" data definitions at a given

instruction in the program; that is, the data definitions prior

to the instruction that are used following the instruction.

4-104

The basic data flow analysis algorithms and a listing

of a PL/I procedure are given in the source article (Source 1).

e. Research and Findings

Osterweil (Source 2) makes the following comments

concerning data flow analysis techniques: "With the realization

that so much valuable static analysis can be carried out by

adaptations of a few basic data flow analysis algorithms,

comes an appreciation of the pivotal importance of these algorithms.

Hence, the further study of these algorithms must be recognized

as a research area of importance" (to the development of an

integrated testing, analysis and verification system).

4.2.40 LIBRARIAN

a. Category - Configiration Control Tool

e Support Library

9 Configuration Status Reporting

e Debug Tools - Editor

b. Sources

(1) TRW (Catalog), Software Tools Catalogue and Recom-

mendations, TRW, Defense and Space Systems Group, January 1979.

(2) McNurlin, B. C., "Using Some New Programming

Techniques," EDP Analyzer, Volume 15, Number 11, November 1977,

pp 1-13.

c. Status

LIBRARIAN is mentioned in this report as an example

of commercially available library maintenance tools. LIBRARIAN

is distributed by Applied Data Research, Inc., Princeton,

New Jersey, for use on the IBM 360/370. Many similar library

maintenance tools are available from various vendors.

d. Description

The LIBRARIAN is a source program management system.

Source programs can be stored and subsequently retrieved and

4-105

updated using system commands. System facilities are included

to protect against unauthorized access to master files. Pro-

gramming facilities include commands for inserting, deleting

and replacing source statements, syntax checking of COBOL

programs, editing and scanning, provisions for copying, renaming

and applying temporary changes to source programs, user exits

for specialized local code interfaces, and the ability to

rearrange and expand statements within a source program.

Management facilities include the ability to produce reports

showing the status and attributes of all source programs within

a master file, including a historically accurate, date-stamped

audit trail of all changes made to a program.

A TSO (Time Sharing Option) interface option permits

TSO users direct access to program modules. The Space Saver

option produces reports which allow monitoring and optimization

of all disk-oriented direct access resources. The LIBRARIAN

on-line option features Customer Information and Control System

(CICS) and Virtual Memory (VM) on-line interfaces. There

is also an entry version designated LIBRARIAN/E.

e. Research and Findings (Source 2)

Columbus Mutual Life Insurance Company used the LIBRARIAN

in converting the IBM's ALIS (Advanced Life Information System).

LIBRARIAN was very helpful for controlling the creation of

the ALIS support proa-ams plus changes and extensions to the

ALIS package. Prior to installing the ADR remote job -ntry

systcm, a great deal of time was spent carrying card decks

to computer operations and printouts back to programmers.

After obtaining the remote job entry system, turnaround time

was considerably reduced.

Columbus Mutual reports the following benefits from

using a source code control tool:

" The source code is secure

" Computer operations cannot erroneously use an
outdated version of a program

4-106

* There is no longer a worry about the only copy

of the source cod- being destroyed

* Code is accessible for review

* There is an audit trail of all changes made to

each program.

4-10

4-10 7

,ET ON V

'TECH'NOI 0(;N R1I I FW SHYMNI

5.1 MA INTENANCE ''P-FP - i

Many s " t t,-o f - t lit,-,I t t 0o I '111~d t ech iqte Ill -mtell I:,d II

teolt- Mnd Lit ii it yporaWh ik-li M0e w011i-known aid.-; inl !-rt t -

W I~t' de'Ve IojlIruent 11 0 eqn 11 vy app I i cilble to t he oper-a i on.- anld

aai nt eriancte pha'u-'o llowi'Ve , tilte, m a~ ill t hi.- r por t i! di

rected towarld" tool. -ulnd t ochniliue.- Wh ich are, be il(nqInl-d or pro)

t10ose(d l or U.'10 n :;I im tilhe proh 1erru; !:;pee iIi e t o m1a ilnt a ifl i

OJ)0'I t i ona~ 1 -;oltwar e ~\:te

I1 . I Prolem:;w Addi t:;-od byta -t- eAttTcnlo :

m i ntolnanee(t0ChAmo10kqY itl be itnq di rooted I owaid the I ol

lo'i ii' pi obleml ared:;.

1. I'i. !,~~'t Ic nor :. t i I k ri - 1t Ir p

lit,; I rId aondrrene: Iohmaill (Reft, en cieo) :t .11 t tha~ltt I(henot I opv*

ml;tIi (t t k to iI :; :; ('11 ilc Ii 11 met (, i t il I ntr!er!; n

de!; ii (11 t Op t. I I VY hb'o llule!: i Iok- Ie("w i iqk ki d i I (ton(1 (1111 0 npIo tit 'V;

t lit, -.t I r not Ill (I k d t (I I o i 011t k,!; 'I(-e::' ai (It honf Il 1) e ph, :; i o t Ihr t it (-

I ity o t :;t I not in e j:; (hit nrro!;t i illpo I tant onr:;idt'l at ion il n ;ot

w 'I I e 11,1i lit na e Arnd tIm it I oka1 op~~ i 'at ol o f ~ 1 ile ;vjtr

ilRrun i:;: de t I U: on

Co I ree t i 1an en1 1 01 may i I d tr Ii ' add i t (io, 1 or'I

I lt o tlit, ; : eml. Rinnriuini 'lor t 1 y aInd lit, (Ret ('Ir once .'B 'I I eoor I

t iI' I * Ii. til l;'ri'l I t, W11 i oh1 i Il i oI 0: 11,hat I i pp 1' I t con

i t it t' tlt I 0111 t k ;or I w r orI I t' t't IIL)I i t' t t'. tno k: (I!

Ir i'fliit' , l :tit: t !a t a ;t- I wi 'I I o i ioaIt)In tI c Ii it, i iti h it

a.I e c I o ')0 ft' cetwr t I 0 iice [I t ;eooridir A erI I (,I

C. Lack of Documentation

Maintenance activities are usually performed by person-

nel who are not familiar with the software to be changed. The

documentation required for understanding the software is often

inadequate or, if originally adequate, has not been updated to

reflect changes made following delivery.

d. Regression Testing

Jensen and Tonies (Reference 30) state that "the two

fundamental questions in maintaining software" are:

0 If one module is changed, what other modules have

to be retested?

* If a series of changes are made throughout the4system, which modules have to be retested to re-

store the system testedness level?

I Maintenance technology is attempting to answer these
questions, in addition to assisting in the testing activity after

the test cases have been selected.

5.1.2 Applications of Maintenance Technologies

The following applications of maintenance technoloqies have

been identified from the literature survey.

a. Data Base

A software data base is an essential requirement for

configuration management and for using automated tools to main-

tain software. Ramamoorthy and Ho (Reference 28) state, "The

success of maintenance tools depends heavily on the data base

which provides a convenient means of storing test cases, error

history and statistics, and cataloging detailed program char-

acteristics."

5-2

b. Documentation

Documentation is an important aspect of software main-
tenance and should be given a high priority in the maintenance

phase. Documentation tools are needed to:

" Assist in understanding the software to be maintained.

" Record all changes and test history during the main-
tenance phase for the purposes of future maintenance.

C. Static and Dynamic Analysis

Static and dynamic analysis tools are capable of per-

forming many functions of value during the maintenance phase,
Related to their primary function as error isolation and proqram

revalidation tools, one study (Reference 31) showed that dynamic

analysis detected more errors but static analysis detected errors

earlier. It is generally agreed that the two techniques are

complement iry and should be used in combination.

In addition to their primary function, static analysis

tools usually provide:

o Automatic program documentation

* Program structure data for redesign analysis

0 Ripple effect analysis data

-The set of modules that invoke a changed module
-Sets of modules that the changed module invokes

-Program variables affected by a proposed change.

In general, dynamic analysis tools also provide:

" Data for regression testing, such as paths or single
modules that remain untested following a program
mod if icat ion

" Performance data for perfective maintenance and
redesign analysis

d. Code Production

Code production tools used in the development phase are
equally applicable to the maintenance phase, with the same

limitations. As Gries (quoted by Wegner in Reference 23) states:

5'-3

"The importance is emphasized of distinguishing between goals

such as understandibility, flexibility and efficiency, and means

of achieving the goal such as not using GOTOs or relying on

elaborate debugging and test tools rather than on writing error-

free well-structured programs."

e. Performance Evaluation

Tools in this area have been developed primarily in

connection with operating systems but are now being directed

toward evaluating the performance of large application systems.

The importance of performance considerations during the main-

tenance phase has been recognized (Reference 12).

f. Reliability Measurement

Reliability measurement tools are available for deter-

mining software reliability changes during the maintenance phase

and managing the maintenance schedule.

g. Integrated Systems

The current trend is toward the development of inte-

grated tool systems with standard procedures for their use through-

out the life cycle. The System Development Corporation's Soft-

ware Factory (Reference 32) is an example of a system using a

data base and a set of automated tools for development and main-

tenance. Tools include static and dynamic analysis, test anal-

ysis, automatic documentation, and test case generation. Main-

tenance functions include configuration control, evaluating the

impact of charges, tracking the completeness and accuracy of

changes, and reporting the status of changes and corrections.

Bell Laboratories' Programmer's Workbench (Reference 33)

provides a general purpose tool kit which resides entirely on

a small dedicated machine (PDP-l1 based UNIX) and is application

and machine independent. Standard procedures are used for pro-

gram maintenance functions. one advantage of this approach is

that the tools are still applicable when the user changes com-

puters or operating systems.

5-4

The National Software Works (Reference 34), through

the use of computer netting, allows the use of tools which are

resident on the host machine best suited to support the tool.

The large selection of software tools residing on different host

computer systems are integrated into a unified tool kit under

a single monitor with a single file system. Expertise concerning

the individual computers and formats is not required in order

to use the tools.

h. Research Areas

Attention is being directed toward the following areas

with potential application to the maintenance phase:

" Upgrading current systems for fault tolerance and
automatic fault recovecy

" Providing automated tools for the maintenance of
embedded software and mini- and micro-computer soft-
ware

" Concurrent process programming systems maintenance

" Automatic programming

" Advanced verification techniques using symbolic
execution, proof of~ correctness, mutation analysis
and software sneak analysis

" Automatic testing, automatic selection of optimal
test cases, and automatic generation of test data

" Requirements statement languages, design statement
languages and test procedure languages which can
be easily automated and subjected to analysis by
automated tools.

5.1.3 Problems with the Application of Automated Tools

The use of automated tools is not widespread for the fol-

lowing reasons, summarized from the literature reviewed:

* Management is reluctant to forsake traditional
methods.

e Management sometimes imposes tools when the intended
user does not perceive the problem to be solved.

* There is a lack of confidence in the capability of the
available tools to solve the problem.

o Some tools are available only to the companies
that have been able to finance their development.

5-5

* The use of tools is too expensive

-In time and resources for development
-In purchase price
-In computer operating time and equipment
-In manpower resoutces for analysis of the results.

* Using automated tools may increase verification or
testing time beyond schedule limitations.

* Information concerning the availability and capa-
bilities of tools is limited.

e Some tools are difficult to use because

-Documentation is poor.
-Input is complicated.
-Output is too extensive for analysis.

* The equipment being used may be too small to support
the tool.

o The tool may be available only for a certain machine
or a certain language, and modification of the tool
is too difficult or too expensive

* The tools thems~elves have not been adequately main-
tained and updated.

o Tools, especially simulation tools, which have been
developed for designing, verifying and testing the
software prior to delivery have been considered
"throwaway items" and are not delivered as part of
the software package.

o A well-defined methodoloqy for the use of tools is
lacking.

5.1.4 Criteria for Selection of Automated Tools

General guidelines for the evaluation and selection of auto-

mated tools by the user are summarized below. Basically, an

3utomated tool should:

" Provide rapid identification of problems and rapid
implementation of solutions

" Be thoroughly documented and tested

" Fulfill a need without creating new problems

" Be inexpensive to use

" Be easy to learn, or at least worth the effort of
learning in terms of the benefits obtained

e Be easy to use after the initial learning period

5-6

" Provide usable information and not simply more data

" Be available for the user's equipment and program
language

5.1.5 Support of Automated Tools

Some guidelines and general comments on the use of automated

tools are summarized as follows:

" Tools must be supported with sound management,
organizational concepts and procedures

" Tools must be reviewed periodically for enhancement,
utilization of new technologies, or retirement.

" A single technique or tool is insufficient; a com-
bination of consistent and complementary tools
should be selected. Ideally, the techniques and
discipline should be the same for using all tools.

" Existing tools should be used if possible, rather
than redeveloping similar tools

" Tools require the interaction of human experience
and judgment and can only assist the user, not replace
him.

5.1.6 Evaluation of Tools

It is generally agreed that the tools are insufficiently

evaluated in terms of their full range of capabilities, their

limitations and their proper application. Goodenough (quoted

by Wegner in Reference 23) states: "There has been an over-L

emphasis on tool development and insufficient emphasis on analysis

and evaluation of effectivenss of tools." Concerning testing

tools, he reports: "Although a great deal of effort has been

expended on the development of testing tools, little is known

about the relative or absolute effectiveness of different testing

btrategies in finding errors in production programs."

Evaluation of the tools should also consider their applica-

bility and use in an integrated tool system. Osterweil (Ref-

erence 35) states that the focus of the evaluation "should be

not on what can be done by each individual technique, but rather

5-7

on what should be done by each in the context of the overall

system" and should "explore the significant problems involved

witi interfacing the techniques to each other."

5.2 MAINTENANCE RESEARCH DIRECTIONS

It is apparent from the literature reviewed for this report

that present knowledge and understanding of software maintenance

technology is inadequate. Delineation of the technology applica-

tion environment or measurement of technology performance effec-

tiveness are illustrative of the kind of data that has only begun

to appear in the literature. As this report demonstrates, there

is an abundance of information available concerning maintenance

needs and technology development. Much of this information has

been developed from research and analysis into specialized main-

tenance problems and environments. These limited scope efforts

have led to piecemeal definition of potential maintenance techno-

logy applications that are narrowly defined and generally of

limited usefulness. This area of software engineering research

demands a program of basic research into the fundamental proper-

ties of software evolution. An understanding of these properties

is essential to the development of a unified and universally appli-

cable software maintenance technology. Development of such a

technology would establish maintenance engineering as a legitimate

engineering subdiscipline under the aegis of software engineering.

For the present, several areas for software maintenance

research have been Suggested as a result of the review of main-

tenance technology literature. Basic research into the proper-

ties of software evolution must encompass these areas; however,

individually their study would materially enhance understanding

of software maintenance requirements and application.

" Quantitative definition of universally applicable
software character ist ics.

" Quantitative definition of maintenance technology
performance metrics.

" Comprehensive analysis of maintenance technology
performance in operational environments.

" Definition of a maintenance engineering discipline
and the principles governing application of main-
tenance techniques and tools.

SECTION VI

REFERENCES

1. Munson, J. B., "Software Maintainability: A Practical Con-
cern for Life-Cycle Costs," Proceedings COMPSAC 1978, Chicago,
IL, November 1q78, pp 54-59.

2. Mills, H. D., "Software Development," IEEE Transactions
on Software Engineering, Volume SE-2, Number 4, December
1976, pp 265-273.

3. Canning, R. G., "That Maintenance 'Iceberg,'" EDP Analyzer,
Volume 10, Number 10, October 1q72, pp 1-13.

4. Boehm, B. W., "Software Engineering," IEEE Transactions
on Computers, Volume C-25, Number 12, December 1976, pp
1226-1241.

5. Zelkowitz, M. V., "Perspectives on Software Engineering,"
Computing Surveys, Volure 10, Number 2, June 1978, pp
197-216.

6. Canning, R. G., "Progress In Software Engineering: Part 2,"
EDP Analyzer, Volume 16, Number 2, March 1978, pp 1-13.

7. Walters, G. F. and McCall, J. A., "The Development of Metrics
for Software R&M," Proceedings Annual Reliability and
Maintainability Symposium, Los Angeles, January 1978, pp
79-85.

8. Swanson, E. B., "The Dimensions of Maintenance," Proceedings
Second International Conference on Software Reliability,
San Francisco, CA, October 1976, pp 492-497.

9. Belady, L. A. and Lehman, M. M., A Model of Large Program
Development, IBM System Journal, Volume 15, Number 3, 1976.

10. Lehman, M. M., "Evolution Dynamics - A Phenomenology of
Software Maintenance," Proceedings Software Life Cycle
Management Workshop, August 1977, pp 313-323.

11. Uhrig, J. L., "Life Cycle Evaluation of System Partitioning,"
Proceedings COMPSAC 1977, Chicago, IL, November 1977, pp
2-8.

12. Yau, S. S. and Collofello, J. S., Performance Considerations
in the Maintenance of Large-Scale Software Systems, Interim
Report, June 1979, RADC-TR-79-12q, A072380.

13. Sharpley, W. K., Jr., "Software Maintenance Planning for
Embedded Computer Systems, Proceedings COMPSAC 1977,
Chicago, IL, November 1977, pp 520-526.

6-1

14. Cooper, J. D., "Corporate Level SoftwaIre Management," IEEE
Transactions on Software Engineerinq, Volume SE-4, Number 4,
July 1978, pp 319-326.

15. Lientz, B. P., et al, "Characteristics of Application Soft-
ware Maintenance," Communications of the ACM, Volume 21,
Number 6, June 1978, pp 466-471.

16. Gunderman, R. E., "A Glimpse into Program Maintenance,"
Datamation, Volume 19, Number 6, June 1973, pp 99-101.

17. Daly, E. B., "Management of Software Development," IEEE
Transactions on Software Engineering, Volume SE-3, May 1977,
pp 229-242.

18. Curtis, B., et al, "Measuring the Psychological Complexity
of Software Maintenance Tasks with the Halstead and McCahc
Metrics," IEEE Transactions on Software Engineering, Volume
SE-5, Number 2, March 1979, pp 96-104.

19. Lindhorst, W. M., "Scheduled Maintenance of Applications Soft-
ware," Datamation, Voiume 19, Number 5, May 1973, pp 64-67.

20. Gilb, T., Software Metrics, Winthrop Publishers, Inc.,
Cambridge, MA, 1977, 282 pp.

21. Gilb, T., "Controlling Maintainability: A Quantitative
Approach for Software," Unpublished paper.

22. Reifer, D. J. and Trattner, S., "A Glossary of Software Tools

and Techniques," Computer, Volume 10, Number 7, July 1977,
pp 52-60.

23. Wegner, P., "Research Directions in Software Technology,"
Proceedings Third International Conference on Software
Engineering, Atlanta, GA, May 1978, pp 243-259.

24. Stucki, L. G., et al., Methodology for Producing Reliable
Software, McDonnell Douglas Astronautics Company, March
1976, NASA CR 144769.

25. Finfer, M., Fellows, J. and Casey, D., Software Debugging
Methodology, Final Technical Report, April 1979, RADC-TR-79-57,
Three Volumes, A061)09, A0h9540, A06954I.

26. Taylor, R. N., and Osterweil, L. J., "A Facility for Verifi-
cation Testing and Documentation of Concurrent Software,"
Proceedings COMPSAC 1978, Chicago, IL, November 1978, pp. 36-41.

27. Adkins, G. and Pooch, V. M., "Computer Simulation: A Tutor-
ial," Computer, Volume 10, Number 4, April 1977, pp. 12-17.

6-2

28. Ramamoorthy, C. V., and Ho, S. F., "Testing Large Software
with Automated Software Evaluation Systems," Proceedings
International Conference on Reliable Software, Los Angeles,
CA, April 1975, pp 382-394.

29. Brooks, F. P., Jr., The Mythical Man-Month, Addison-Wesley
Publishing Company, Philippines, July 1978, 195 pp.

30. Jensen, R. W. and Tonies, C. C., Software Engineering, r

Prentice-Hall, Incorporated, New Jersey, 1979, 580 pp.

31. Rubey, R. J., et al., "Quantitative Aspects of Software
Validation," IEEE Transactions on Software Engineering,
Volume SE-i, Number 2, June 1975, pp 150-155.

32. Bratman, H. and Court, T., "The Software Factory," Computer,
Volume 8, Number 5, May 1975, pp 28-37.

33. Ivie, E. L., "The Programmer's Workbench-A Machine for Soft-
ware Development," Communications of the ACM, Vclume 20,
Number 10, October 1977, pp 746-753.

34. Robinson, R. A., "National Software Works: Overview & Status,"
Proceedings COMPCON Fall 1977, Washington, D.C., September
1977, pp 270-273.

35. Osterweil, L. J., "A Methodology for Testing Computer Pro-
grams," Proceedings Computers in Aerospace Conference, Los
Angeles, CA, November 1977, pp 52-62.

6-3

SECTION VII

BIBLIOGRAPHY

Adams, J. M., "Experiments on the Utility of Assertions for Debug
ging," Proceedings Eleventh Hawaii InLernational Conference on
System Sciences, Honolulu, HI., January 1978, pp. 31-39.

Adkins, G. and Pooch, V. W., "Computer Simulation: A Tutorial,"
Computer, Volume 10, Number 4, April 1977, pp. 12-17.

Alford, M. W., "Software Requirements Engineering Methodology
(SREM) at the Age of Two," Proceedings COMPSAC 1978, Chicago,
IL, November 1978, pp. 332-339.

Alford, M. W. and Burns, I. F., "R-Nets: A Graph Model for Real-
Time Software Requirements," Proceedings MRT Symposium on
Computer Software Engineering, New York, NY, April 1976,
pp. 97-108.

Allen, F. E. and Cocke, J., "A Program Data Flow Analysis Proce-
dure, "Communications of the ACM, Volume 19, Number 3, March
1976, pp. 137-147.

Anderson, P. G., "Redundancy Techniques for Software Quality,"
Proceedings Annual Reliability and Maintainability Symposium,
Los Angeles, CA, January 1978, pp. 86-93.

Arsac, J. J., "Syntactic Source to Source Transforms and Program
Manipulation," Communications of the ACM, Volume 22, Number
1, January 1979, pp. 43-53.

Baker, F. T., "Structured Programming in a Production Programming
Environment," IEEE Transactions on Software Engineering,

Volume SE-i, Number 2, June 1975, pp. 241-252.

Basili, V. R. and Turner, A. J., "Iterative Enhancement: A Prac-
tical Technique for Software Development," IEEE Transactions
on Software Engineering, Volume SE-i, Number 4, December
1975, pp. 390-396.

Bate, R. R. and Ligler, G. T., "An Approach to Soft, are m esting:
Methodology and Tools," Proceedings COMPSAC 1978, Chicago,
I, November 1978, pp. 476-480.

Bauer, H. A. and Birchall, R. H., "Managing Large-Scale Software
Development with an Automated Change Control System" Pro-
ceedings COMPSAC 1978, Chicago, IL, November 1978, pp. 13-17.

7-1

Bpaver, E. W. and John, F. C., "Oporational. oftware Manaqement
for the Peacp Rhine Integrated Weapon Control System," Pro-
ceedings National Aerospace Electronics Conference, Dayton,
OH, May 1978, pp. 1322-1326.

Becker, R. A. and Chambers, J. M., "Design and Tmplementation
of the 'S' System for Interactive Data Analysis," Proceed-
ings COMPSAC 1978, Chicago, IL, November 1q78, pp. 6?6-6zq.

Belady, L. A. and Leavenworth, B., "Program Modifiabiiity," IBM
Technical Memo Number 15.

Belady, L. A. and Lehman, M. M., A Model of Large Program Develop_:
ment, IBM System Journal, Volume 15, Number 3, 1976.

Belford, P. C., "Experience Utilizing Components of the Software
Development System," Proceedings COMPSAC 1978, Chicago,
IL, November 1978, pp. 340-344.

Beltord, P. C. and Taylor, D. C., "Specification Verification-
A Key to Improving Software Reliability," Proceedings MRT
Symposium on Computer Software Engineering, N w York, NY,
April 1976, pp. 93-96.

Bell, T. E. and Bixler, D. C., "A Flow-Oriented Requirements
Statement Language," Proceedings MRI Symposium on Computer
Software Engineering, New York, NY, April 1976, pp. 109-122.

Benson, J. P. an] Melton, R. A., "A Laboratory for the Development
and Evaluation of BMD Software Quality Enhancement Techniques,"

Proceedings Second International Conference on Software
Engineering, San Francisco, CA, October 1976, pp. 106-109.

Berri, R. E., "Specifying Milestones for Software Acquisitions,"
Proceedings Computers in Aerospace Conference, Los Angeles,
CA, Novembe" 1977, pp. 23-33.

Bersoff, E. H., Henderson, V. D. and Sieqel, S. G., "Software
Configuration Management: A Tutorial," Computer, Volume
12, Number 1, January 1979, cu. 6-14.

Bianchi, M. H. and Wood, J. L., "A Users' Viewpoint of the Pro-
grammer's Workbench," Proceedings Sccond International Con-
ference on Software Engineering, San Francisco, CA, October
1976, pp. 193-199.

Bielski, J. P. and Blankertz, W. H., "The General Acceptance
Test System (GATS)," Proceedings COMPCON Spring 1977, San
Francisco, CA, March 1977, pp. 207-210.

7-2

I 1l I's 111 i IN I h : ,), Kl t t ll IV 11 1

fit 'S NI .ii't IN 2' I nnc tl), Pwn u I 1 , 'A I t.

w,
5

I~ I . t. I'\ v Pj Iik0 d 1 1 1 *>'I ip 4.1l 41'

I I t, .1 1 nI t ; 1 -

Braun, C. L. and Wohman, B. L., "Tools and Techniques for Imple-
menting a Large Compiler on a Small Computer," Proceedings
COMPSAC 1978, Chicago, TL, November 1978, pp. 408-414.

Braverman, P. H., "Managing Change," Datamation, Volume 22, Num-
ber 10, October 1976, pp. 111-113.

Brooks, F. P., Jr., The ythical Man-Month, Addison-Wesley Pub- I
lishinq Company, Philippines, July 1978, 195 pp.

Brown, J. R. and Lipow, M., "Testing for Software Reliability,"
Proceedings International Conference on Peliable Software,
Los Angeles, CA, April 1975, pp. 51q-527.

Brown, J. R. and Fischer, K. F., "A Graph Theoretic Approach
to the Verification of Program Structures," Proceedings
Third International Conference on Software Engineering,
Atlanta, GA, May 1978, pp. 136-141.

Browne, J. C. and Johnson, D. B., "FAST: A Second Generation

Program Analysis System," Proceedings Third International
Conference on Software Engineerinq, Atlanta, GA, May 1978,
pp. 142-148.

Bucher, D. E. W., "Maintenance of the Computer Sciences Tele-
processing System," Proceedi-gs International Conference
on Reliable Software, Los Angeles, CA, April 1075, pp. 260-
266.

Budd, T., Majoras, N. and Sneed, If., "txperiences with a Soft-
ware Test t"actory," Proceeding-s COMi')CON Snt in~l n c79, S.-in
Francisco, CA, Februarv 197c, pp. 3l0-? .

Burge , R. T., "AUTASIM: A System for Computerized Assembly
of S intulat ion Model;, " Proceedings Winter Simulation Confer-
ence, Washinqton, DC, ,January 1074, pp. 1'-22.

Caine, S3. 11. and Gordon, E. K., "PDI, - A Tool for ,qoftwaie Design,"
Pttoce0(tings National Comput er Conference, Anaheim, CA, May
1,)7,, pp. 271-276.

Campbel l, .1. S., "Harne;sIinq the SLftware Revolution to Meet
Navy Needs, " Defen.se Manag ement Journal , Volume 14, Number
3, May 1078, pp. 17-21.

Campos , I. M. and R..sti in, (. , "Concurrent Software ,ystem Design
Suki)j)r-ted by SARA at the Age of One," Proceedinqs Third
Inter national Corence on ;o-tware, Englin(eerinq, Atlanta,
CA, May]0)7H, pp. 210-24'.

7-4

Canning, R. G., "Progress in Software Engineering, Part I," EDP
Analyzer, Volume 16, Number 2, February 1978, pp. 1-13.

Canning, R. G., "Progress in Software Engineering, Part 2," EDP
Analyzer, Volume 16, Number 3, March 1978, pp. 1-13.

Canning, R. G., 'That Maintenance 'Iceberg'," EDP Analyzer, Volume
10, Number 10, October 1972, pp. 1-13.

Carpenter, L. C. and Tripp, L. L., "Software Design Validation
Tools," Proceedings International Conference on Reliable
Software, Los Angeles, CA, April 1975, pp. 395-400.

Cave, W. C. and Salisbury, A. B., "Controlling the Software Life
Cycle - The Project Management Task," IEEE Transactions
on Software Engineering, Volume SE-4, Number 4, July 1978,
pp. 326-334.

Chandrasekaran, B., "Test Tools: Usefulness Must Extend to Everyday
Programming Environment," Computer, Volume 12, Number 3, March
1979. pp. 102-103.

Chandy, K. M., "A Survey of Analytic Models of Rollback and Recov-
ery Strategies," Computer, Volume 8, Number 5, May 1975,
pp. 40-47.

Chen, W-T, HO, J-P and Wen. C-H., "Dynamic Validation of Programs
Using Assertion Checking Facilities," Proceedings COMPSAC
1978, Chicago, IL, November 1978, pp. 533-538.

Chrysler, E., "Some Basic Determinants of Computer Programming
Productivity," Communications of the ACM, Volume 21, Number
6, June 1978, pp. 472-483.

Cicu, A., Maiocchi, M., Polillo, R. and Sardoni, A., "Organizing
Tests During Software Evolution," Proceedings International
Conference on Reliable Software, Los Angeles, CA, April
1975, pp. 43-50.

Clarke, L. A., "Testing: Achievements and Frustrations," Pro-
ceedings COMPSAC 1978, Chicago, IL, November 1978, pp. 310-
320.

Clarke, L. A., "A System to Generate Test Data and Symbolically
Execute Programs," IEEE Transactions on Software Engineering,
Volume SE-2, September 1976, pp. 215-222.

Compendium of ADS Project Management Tools and Techniques, Air
Force Data Automation Aqnc,,, Gunter AFS, AL, May 1977.

Compiter Sciences Corporation, Software Production Daita, Final
Technical Report, July 1977, RDC-PR-77-77,:h8.

7- 5

Cooper, J. D., "Corporate Level Software Management," IEEE Trans-

actions on Software Engineering, Volume SE-4, Number 4,
July 1978, pp. 319-326.

Curry, R. W., "A Measure to Support Calibration and Balancing
of the Effectiveness of Software Engineering Tools and Tech-
niques," Proceedings MRI Symposium on Computer Software
Engineering, New York, NY, April 1976, pp. 199-214.

Curtis, B., et al., "Measuring the Psychological Complexity of

Software Maintenance Tasks with the Halstead and McCabe
Metrics," IEEE Transactions on Software Engineering, Volume V
SE-5, Number 2, March 1979, pp. 96-104.

Daly, E. B., "Management of Software Development," IEEE Trans-

actions on Software Engineering, Volume SE-3, May 1977,

pp. 229-242.

Davidson, D. and Jonos, C., "A Comprehensive Software Design
Technique," Proceedings MRI Symposium on Computer Software
Engineering, New York, NY, April 1976, pp. 513-529.

Davidson, S. and Shriver, B. D., "An Overview of Firmware Engi-
neering," Computer, Volume ii, Number 5, May 1978, pp. 21-

33.

Davis, C. G. and Vick, C. R., "The Software Development System:
Status and Evolution," Proceedings COMPSAC 1978, Chicago,
IL, November 1978, pp. 326-331.

DeRoze, B. C., Defense System Software Management Plan, Office
of the Secretary of Defense, March 1976, AD-A022 558.

DeRoze, B. C. and Nyman, T. H., "The Software Life Cycle - A
Management and Technological Challenge in the Department

of Defense," IEEE Transactions on Software Engineering,
Volume SE-4, Number 4, July 1978, pp. 309-318.

Dershowitz, N. and Manna, Z., "Inference Rules for Program Anno-
tation," Proceedings Third International Conference on qoft-

ware Engineering, Atlanta, GA, May '978, pp. 158-167.

Dershowitz, N. and Manna, Z., "The Evolution of Programs: Automatic
Program Modification," IEEE Transactions on Software Engi-

neering, Volume SE-3, Number 6, November 1977, pp. 377-385.

bolotta, T. A. and Mashey, J. R., "An Introduction to the Pro-
grammer's Workbench," Proceedings Second International Con-

ference on Software Engineering, San Francisco, CA, October
1976, pp. 164-168.

7-6

Elliott, I. B., "SPTRAN: A Fortran - Compatible Structured Pro-
gramming Language Converter," Proceedings MRI Symposium
on Computer Software Engineering, New York, NY, April 1976,
pp. 331-351.

Fabry, R. S., "How to Design a System in Which Modules can be
Changed on the Fly," Proceedings Second International Confer-
ence on Software Engineering, San Francisco, CA, October
1976, pp. 470-476.

Fairley, R. E., "Modern Software Design Techniques," Proceedings
MRI Symposium on Computer Software Engineering, New York,
NY, April 1976, pp. 11-30.

Fairley, R. E., "An Experimental Program Testing Facility," IEEE
Transactions on Software Engineering, Volume SE-i, Number
4, December 1975, pp. 350-357.

Finfer, M., Fellows, J. and Casey, D., Software Debugging
Methodology, Final Technical Report, April 1979, RADC-TR-
79-57, Three Volumes.

Fink, R. C., "Major Issues Involving the Development of an Effective
Management Control System for Software Maintenance," Pro-
ceedings COMPSAC 1977, Chicago, IL, November 1977, pp. 533-
538.

Fischer, K. F., "A Test Case Selection Method for the Validation

of Software Maintenance Modifications," Proceedings COMP!2
1977, Chicago, IL, November 1977, pp. 421-426.

Fleischer, R. J. and Spitler, R. W., "SIMON: A Project Manaqe-
ment System for Software Development," Proceedings MRI
Symposium on Computer Software Engineerinq, New York, NV
April 1976, pp. 547-560.

Fleischman, S. L., "Software Configuration Management for Mini-
computers Using National Software Works Tools," Proceedinqs
COMPCON Fall 1977, Washington, DC, September 1977, pp. 279-
283.

Friedman, F. L., "Decompilation and the Transfer of Assembly-
Coded Minicomputer System Programs," Proceedings MRI Sympos-
ium on Computer Software Engineering, New York, NY, April
1976, pp. 301-330.

Gannon, C., "JAVS: A Jovial Automated Verification System, Pro-
ceedings COMPSAC 1978, Chicago, IL, November 1978, pp. 539-
544.

7-7

Gansler, J. S., "Keynote: Software Management," Proceedings

MRI Symposium on Computer Software Engineering, New York,
NY, April 1976, pp. 1-9.

Gaulding, S. N., "A Software Design Methodology and Tools,"

Proceedings COMPCON Spring 1977, San Francisco, CA, February
1977, pp. 198-201.

Gaulding, S. N., "A Software Engineering Discipline and Tools

for Real-Time Software," Proceeiings Tenth Hawaii International

Conference on System Sciences, Honolulu, HI, January 1977,
pp. 220-223.

German, S. M. and Wigbreit, B., "A Synthesizer of Inductive Asser-

tions," IEEE Transactions cn Software Engineering, Volume SE-l,

Number 2, June 1975, pp. 68-75.

Gilb, T., Software Metrics, Winthrop Publishers, Cambridge, MA,

1977, 282 pp.

Gilb, T., "Controlling Maintainability: A Quantitative Approach

for Software," Unpublished paper. j.
Godoy, S. G. and Engels, G. J., "Software Sneak Analysis," Pro-

ceedings Computers in Aerospace Conference, Los Angeles,

CA, November 1977, pp. 63-67.

Good, D. I., London, R. L. and Bledsoe, W. W., "An Interactive
Program Verification System," Proceedings International

Conference on Reliable Software, Los Angeles, CA, April
1975, pp. 482-492.

Goodenough, J. B. and Gerhart, S. L., "Toward a Theory of Test

Data Selection," IEEE Transactions on Software Engineering,

Volume SE-I, Number 2, June 1975, pp. 156-173.

Gordon, S. C., "The Development of a Computer Software Management

Discipline,"Proceedings National Aeronautics and Electronics

Conference, Dayton, OH, May 1978, pp. 1345-1354.

Goullon, H., Isle, R. and Lohr, K., "Dynamic Restructuring in an

Experimental Operating System," Proceedings Third Inter-

national Conference on Software Engineering, Atlanta, GA,

May 1978, pp. 295-304.

Green, J. S., Jr., "Dynamic Software Engineering: An Evolutionary

Approach to Automated Software Development and Management,"

Proceedings Second International Cohiference on Software
Engineering, San Francisco, CA, October 1976, pp. 373-377.

Green, T. F., Schneidewind, N. F., Howard, G. T. and Pariseau,

R. J., "Program Structures,4 omplexity and Error Charac-

teristics," Proceedings MRI Symposium on Computer Soft-

ware Engineering, New York, NY, April 1976, pp. 139-154.

7-8

Greenspan, S. J. and McGowan, C. L., "Structuring Software Develop-
ment for Reliability," Microelectronics and Reliability,
Volume 17, 1978, pp. 75-84.

Gunderman, R. E., "A Glimpse into Program Maintenance," Datamation,
Volume 19, Number 6, June 1973, pp. 99-101.

Gunther, R. C., Management Methodoloqy for Software Product
Engineering, John Wiley and Sons, New York, NY, 1978, 379
pp.

Hallin, T. G. and Hansen, R. C., "Toward a Better Method of Soft-
ware Testing," Proceedings COMSAC 1978, Chicago, IL, November
1978, pp. 153-157.

Hamilton, M. and Zeldin, S., "Higher Order Software - A Methodology
for Defining Software," IEEE Transactions on Software Engineer-
ing, Volume SE-2, Number 1, March 1976, pp. 10-32.

Hamlet, R. G., "Testing Programs with the Aid of a Compiler,"
IEEE Transactions on Software Engineering, Volume SE-3,
Number 4, July 1977, pp. 279-290.

Hamlet, R., "Test Reliability and Software Maintenance," Proceed-
ings COMPSAC 1978, Chicago, IL, November 1978, pp. 315-320.

Hammond, L. S., Murphy, D. L. and Smith, M. K., "A System for
Analysis and Verification of Software Design," Proceedings
COMPSAC 1978, Chicago, IL, November 1978, pp. 42-47.

Hennell, M. A., Hedlev, D. and Woodward, M. R., "Experience with
an ALGOL 68 Numerical Algorithms Testbed," Proceedings
MRI Symposium on Computer Software Engineering, New York,
NY, April 1976, pp. 457-463.

Hetzel, W. C. and Hetzel, N. L., "The Future of Quality Software,"
Proceedings COMPCON Spring 1977, San Francisco, CA, March
1977, pp. 211-212.

Hirschberg, M. A., Frickel, W. G. and Miller, E. F., Jr., "A Se-
mantic Update System for Software Maintenance," Proceedings
COMPCON Spring 1979, San Francisco, CA, March 1979, pp.307-309.

Hodges, B. C. and Ryan, J. P., "A System for Automatic Software
Evaluation," Proceedings Second International Conference
on Software Engineering, San Francisco, CA, October 1976,
pp. 617-623.

Holton, J. B., "Are the New Programming Techniques Beinq Used?"
Datamation, Volume 23, Number 7, July 1977, pp. 97-103.

7-9

....1

Howden, W. E., "DISSECT - A Symbolic Evaluation and Program Test-
ing System," IEEE Transactions on Software Engineering,
Volume SE-4, Number 1, January 1978, pp. 70-73.

Howden, W. E., "Reliability of the Path Analysis Testing Strategy,"
IEEE Transactions on Software Engineering, Volume SE-2,
Number 3, September 1976, pp. 208-214.

Howden, W. E., "Functional Program Testing," Proceedings COMPSAC
1978, Chicago, IL, November, 1978, pp. 321-325.

Howley, P. P., Jr., "Software Quality Assurance for Reliable
Software," Proceedings Annual Reliability and Maintainability
Symposium, Los Angeles, CA, January 1978, pp. 73-78.

Howley, P. P., Jr. and Scholten, R. W., "Test Tool Implementation,"
Proceedings Computers in Aerospace Conference, Los Angeles,
CA, November 1977, pp. 372-377.

Ingrassia, F. S., "The Unit Development Folder (UDF) an Effective
Management Tool for Software Development," Datamation, Volume
24, Number 1, January 1978, pp. 171-176.

Irvine, C. A. and Brackett, J. W., "Automated Software Engineering
Through Structured Data Management," IEEE Transactions on %
Software Engineering, Volume SE-3, Number 1, January 1977,
pp. 34-40.

Itoh, D. and Izutani, T., "FADEBUG-l, A New Tool for Program
Debugging," Proceedings IEEE Symposium on Computer Software
Reliability, 1977, pp. 38-43.

Ivie, E. L., "The Programmer's Workbench - A Machine for Software

Development," Communications of the ACM, Volume 20, Number

10, October 1977, pp. 746-753.

Jensen, R. W. and Tonies, C. C., Software Engineering, Prentice-
Hall, Incorporated, Enqlewood Cliffs, NJ, 1979, 580 pp.

Jessop, W. H., et al., "ATLAS - An Automated Software Testing
System," Proceedings Second International Conference on
Software Engineering, San Francisco, CA, October 1976, pp.
629-634.

Johnson, D., Kolberg, C. and Sinnamon, J., "A Programmable Sys-
tem for Software Configuration Management," Proceedings
COMPSAC 1978, Chicago, IL, November 1978, pp. 402-407.

7-10

Johnson, J. N. and Shaw, J. L., "Fault-Tolerant Software for
a Dual Processor with Monitor," Proceedings MRI Symposium
on Computer Software Engineering, New York, NY, April 1976,
pp. 395-407.

Kane, J. R. and Yau, S. S., "Concurrent Software Fault Detuction,"
IEEE Transactions on Software Engineering, Volume SE-I,
Number 1, March 1975, pp. 87-99.

Kaplan, R. S., "ISSUE: An Information System and Software Update
Environment," Proceedings COMPSAC 1977, Chicago, IL, November
1977, pp. 527-532.

King, J. C., "Symbolic Execution and Program Testing," Communica-
tions of the ACM, Volume 19, Number 7, July 1976, pp. 385-394.

King, J. C., "A New Approach to Program Testing," Proceedings
International Conference on Reliable Software, Los Angeles,
CA, April 1975, pp. 228-233.

Knudsen, D. B., Borofsky, A. and Satz, L. R., "A Modification
Request Control System," Proceedings Second International
Conference on Software Engineering, San Francisco, CA,
October 1976, pp. 187-192.

Koppang, R. G., "Process Design System - An Integrated Set of
Software Development Tools," Proceedings Second International
Conference on Software Engineering, San Francisco, CA, October
1976, pp. 86-90.

Krause, K. W. and Diamant, L. W., "A Management Methodology for
Testing Software Requirements," Proceedings COMPSAC 1978,
Chicago, IL, November 1978, pp. 749-760.

Krause, K. W., Smith, R. W. and Goodwin, M. A., "Optimal Soft-
ware Test Planning Through Automated Network Analysis,"
Proceedings IEEE Computer Software Reliability Symposium,
New York, NY, April 1973, pp. 18-22.

Laffan, A. W., "The Software Maintenance Problem," Proceedings
Eleventh Hawaii International Conference on System Sciences,
Honolulu, HI, January 1978, pp. 119-123.

Lehman, M. M., "Evolution Dynamics - A Phenomenology of Software
Maintenance," Proceedings Software, Life Cycle Managment
Workshop, August 1977, pp. 313-323.

Lehman, M. M. and Parr, F. N., "Program Evolution and Its Impact
on Software Engineering," Proceedings Second International
Conference on Software Engineering, San Francisco, CA, October
1976, pp. 350-357.

7-11

Lientz, B. P., Swanson, E. B. and Tompkins, G. E., "Characteristics
of Application Software Maintenance," Communications of
the ACM, Volume 21, Number 6, June 1978, pp. 466-471.

Lientz, B. P. and Swanson, E. B., "Discovering Issues in Software
Maintenance," Data Management, Volume 16, Number 10, October
1978, pp. 15-18.

Lientz, B. P. and Swanson, E. B., On The Use of Productivity
Aids in System Development and Maintenance, Technical Report
79-1, January 1979, AD A067 947.

Lindhorst, W. M., "Scheduled Maintenance of Applications Software,'
Datamation, Volume 19, Number 5, May 1973, pp. 64-67.

Liskov, B. and Zilles, S., "Specification Techniques for Data
Abstractions," Proceedings International Conference on Reli-
able Software, Los Angeles, CA, April 1975, pp. 72-87.

Liu, C. C., "A Look at Software Maintenance," Datamation, Volume
22, Number 11, November 1976, pp. 51-55.

Lloyd, D. K. and Lipow, M., Reliability: Management, Methods,
and Mathematics, (Second Edition), Published by the Authors,
Redondo Beach, CA., 589 pp.

London, R. L., "A View of Program Verification," Proceedings
International Conference on Reliable Software, Los Angeles,
CA, April 1975, pp. 534-545.

McDonald, W. C. and Williams, J. M., "The Advanced Data Process-
ing Testbed," Proceedings COMPSAC 1978, Chicago, IL, November
1978, pp. 346-351.

McGregor, B., "Program Maintenance," Data Processing, Volume
15, Number 3, May-June 1973, pp. 172-174.

McHenry, R. C. and Walston, C. E., "Software Life Cycle Management:
Weapons Process Developer," IEEE Transactions on Software
Engineering, Volume SE-4, Number 4, July 1978, pp. 334-344.

McKissick, J., Jr. and Price, R. A., "The Software Development
Notebook - A Proven Technique," Proceedings Annual Reli-
ability and Maintainability Symposium, Washington, DC, January
1979, pp. 346-351.

McNurlin, B. C., "Using Some New Programming Techniques," EDP
Analyzer, Volume 15, Number 11, November 1977, pp. 1-13.

Malmberg, A. F., Maintenance for the NET-2 Network Analysis Program,
BDM Cnrporation Report, April 1977, AD A041 074.

7-12

Manley, J. H., "Embedded Computer System Software Reliability,"
Defense Management Journal, Volume 11, Number 4, October
1975, pp. 13-18.

Martin, G. N., "Managing Systems Maintenance," Journal of Systems
Management, Volume 29, Number 7, July 1978, pp. 30-33.

Martin Marietta Corporation, Viking Software Data, Final Technical
Report, May 1977, RADC-TR-77-168, A040770.

Mashey, J. R. and Smith, D. W., "Documentation Tools and Techniques,"
Proceedings Second International Conference on Software
Engineering, San Francisco, CA, October 1976, pp. 177-181.

Merwin, R. E., "Software Management: We Must Find a Way,"

IEEE Transactions on Software Engineering, Volume SE-4,
Number 4, July 1978, pp. 307-308.

Miller, C. R., "Software Maintenance and Life Cycle Management,"
Proceedings Software Life Cycle Management Workshop, August
1977, pp. 53-61.

Miller, E., et al., "Workshop Report: Software Testing and Test
Documentation," Computer, Volume 12, Number 3, March 1979,
pp. 98-107.

Miller, E. F. and Melton, R. A., "Automated Generation of Test Case
Data Sets," Proceedings International Conference on Reliable
Software, Los Angeles, CA, April 1975, pp. 51-58.

Mills, H. D., "Software Development," IEEE Transactions on Software
Engineering, Volume SE-2, Number 4, December 1976, pp. 265-
273.

Miyamoto, I., "Toward an Effective Software Reliability Evaluation,"
"roceedings Third International Conference on Software
Engineering, Atlanta, GA, May 1978, pp. 46-55.

Mohanty, S. N. and Adamowicz, M., "Proposed Measures for the
Evaluation of Software," Proceedings MRI Symposium on Com-
puter Software Engineering, New York, N'- April 1976, pp.
485-497.

Montgomery, H. A. and Turk, R. L., "An Approach for Identifying
Avionics Flight Software Operational Support Requirements-
PAVE TACK an Example," Proceedings National Aerospace Elec-
tronics Conference, Dayton, OH, May 1978, pp. 418-429.

7-13

Mooney, J. W., "Organized Program Maintenance," Datamaticn, Vol-
ume 21, Number 2, February 1975, pp. 63-64.

Munson, J. B., "Software Maintainability: A Practical Concern
for Life-Cycle Costs," Proceedings COMPSAC 1978, Chicago,
IL, November 1978, pp. 54-59.

Musa, J. D., "Software Reliability Measures Applied to System
Engineering," Proceedings AFIPS Conference, Volume 48, AFIPS
Press, Montvale, NJ, pp. 941-946.

Nakamura, Y., et al., "Complementary Approach to the Effective
Software Development Environment," Proceedings COMPSAC 1878,
Chicago, IL, November 1978, pp. 235-240.

Okumoto, K. and Goel, A. L., "Availability and Other Performance
Measures of Software Systems Under Imperfect Maintenance,"
Proceedings COMPSAC 1978, Chicago, IL, November 1978, pp. I66-70.

Osterweil, L. J., "A Methodology for Testing Computer Programs,"
Proceedings Computers in Aerospace Conference, Los Angeles,
CA, November 1977, pp. 52-62.

Osterweil, L. J., et al., "ASSET: A Life-Cycle Verification

and Visibility System," Proceedings COMPSAC 1978, Chicago,
IL, November 1978, pp. 30-35.

Osterweil, L. J. and Fosdick, L. D., "DAVE - A Validation, Error

Detection and Documentation System for FORTRAN Programs,"
Software Practice and Experience, Volume 6, September 1976,
pp. 473-486.

Overton, R. K., et al., Devclopment7 in Computer Aided Software
Maintenance, Technical Report, September 1974, AD A005 827.

Paige, M. R., "Software Design for Pestahility," Proceedings
Eleventh Hawaii International Conference on System Sciences,

AHonolulu, HI, January 1978, pp. 113-118.

Paige, M. R., "The Technology Base for Automated Aids to Progra'
Tests," Proceedings Tenth Annual Hawaii International
Confercnce on System Sciences, Honolulu, HI, January 1977,
pp. 240-243.

Paige, M. R., "An Analytical Approach to Software Testing," Pro-
ceedings COMPSAC 1978, Chicago, IL, November 1978, pp. 527-
532.

Panzl, D. J., "A Language for Specifying Software Tests," Proceed-
ings National Computer Conference, Anaheim, CA, June 1978,
pp. 609-619.

7-14

! -.* _-

Panzl, D. J. "Test Procedures - A New Approach to Software Veri-
fication," Proceedings Second International Confcrence on
Software Engineering, San Francisco, CA, October 1976, pp.
477-485.

Panzl, D. J., "Automatic Revision of Formal Test Procedures,"
Proceedings Third International Conference on Software Engi-
neering, Atlanta, GA, May 1978, pp. 320-326.

Para, P. S., "CLIO - A Relational Data Base System," Proceedings
COMPSAC 1978, Chicago, IL, November 1978, pp. 289-294.

Parnas, D. L., "Designing Software for Ease of Extension and
Contraction," Proceedings Third International Conference
on Software Engineering, Atlanta, GA, May 1978, pp. 264-
277.

Perry, W. E. and Fitzgerald, J., "Designing for Auditability,"
Datamation, Volume 23, Number 8, Aug :st 1977, pp. 46-50.

Peters, L. J. and Tripp, L. L., "Software Design Representation
Schemes," Proceedings MRI Symposium on Computer Software
Engineering, New York, NY, April 1976, pp. 31-56.

Peterson, R. J., "TESTER/l: An Abstract Model for the Automatic
Synthesis of Program Test Case Specification," Proceedings
MRI Symposium on Computer Sofcware Engineering, New Ycrk,
NY, April 1976, pp. 465-484.

"Program Maintenance: User's View," Data Processing, Volume
15, Number 5, September-October 1973, pp. 1-4.

Punter, M., "Programming for Maintenance," Data Processing, Volume
17, Number 4, September-October 1975, pp. 292-294.

Ramamoorthy, C. V., et al., "The Status and Structure of Software
Testing Procedures," Proceedings COMPCON Spring 1977, San
Francisco, CA, March 1977, pp. 367-369.

Ramamoorthy, C. V. and Ho, S. F., "Testing Large Software with
Automated Software Evaluation Systems," Proceedings Inter-
national Conference)n Reliable Software, Los Angeles, CA,
April 1975, pp. 382-394.

Ramamoorthy, C. V., et al., "On the Automated Generation of Program
Test Data," IEEE Transactions on Software Engineering, Vol-
ume SE-2, Number 4, December 1976, pp. 293-300.

7-15

Ramamoorthy, C. V., et al., "Techniques for Automated Test Data
Generation," Proceedings Ninth Asilomar Conference on Cir-
cuits, Systems and Computers, Pacific Grove, CA, November
1975, op. 324-329.

Ramamoorthy, C. V. and Jahanian, P., "Formalizing the Specification
of Target Machines for Compiler Adaptability Enhancement,"
Proceedings MRI Symposium on Computer Software Engineer-
ing, New York, NY, April 1976, pp. 353-366.

Ramamoorthy, C. V. and Kim, K. H., "Software Monitors Aiding
Systematic Testing and Their Optional Placement," Proceedings
First National Conference on Software Engineering, Washington,
DC, September 1975, pp. 21-26.

Ramamoorthy, C. V. and Kim, K. H., "Optimal Placement of Software
Monitors Aiding Systematic Testing," IEEE Transactions on
Software Engineering, Volume SE-l, Number 4, December 1975,
pp. 403-411.

Randell, B., "System Structure for Software Fault Tolerance,"

IEEE Transactions on Software Engineering, Volume SE-l,
Number 2, June 1975, pp. 220-232.

* Reifer, D. J. and Trattner, S., "A Glossary of Software Tools
and Techniques," Computer, Volumc 10, Number 7, July 1977,
pp. 52-60.

Reifer, D. J., "Automated Aids for Reliable Scftware," Proc2edings
International Conference on Reliable Software, Los Angeles,
CA, April 197r, pp. 131-142.

* Riggs, R., "Computer Systems Maintenance," Datamation, Volume
15, Number I , November 1969, pp. 227-232.

Ripley, G. D., "Program Perspectives: A Relational Representation
of Measurement Data," IEEE Transactions on Software Engineer-
ing, Volume SE-3, Number 4, July 1977, pp. 296-300.

Robinson, R. A., "National Software Works: Overview & Status,"
Proceedings COMPCON F.11 1977, Washington, DC, September
197, , pp 270-273.

Rochkind, M. J., "The Source Code ControI System," IEE17 Transactions
on Software Enginee-ing, Volumr, SE-1 Number 4, December
197;, pp. 364-370.

Roman, G., "An Arqum rnt in Favor of Mechanized Software Producti-n,"
IEEE Trinni ction- on Softwai Enqineering, Volume SE-3,
N.mh-r 6, Novembe, lq77 pp. 406-41c.

-16

77 AD-A082 985 IIT RESEARCH INST CHICA60 IL F90

A REVIEW OF SOFTWARE MAINTENANCE TECHNOLOBY.(U)
FEB 90 J D OONAHOO. II R SWEARINGEN F30602-78-C-0255

UNCLASSIFIFO

RADC -TRBO-13
ML

3 msmommm

Ross, D. T., et al., "Software Engineering: Process, Principles
and Goals," Computer, Volume 8, Number 5, May 1975, pp.
17-27.

Rubey, R. J., et al., "Quantitative Aspects of Software Validation,"
IEEE Transactions on Software Engineering, Volume SE-I,
Number 2, June 1975, pp. 150-155.

Saib, S. H., "Executable Assertions - An Aid to Reliable Soft-
ware," Proceedings Eleventh Annual Asilomar Conference on
Circuits, Systems and Computers, Pacific Grove, CA, November
1977, pp. 277-281.

Saib, S. H., et al., Advanced Software Quality Assurance Final
Report, General Research Corporation, May 1978.

Schurre, V., "A Program Verifier with Assertions in Terms of
Abstract Data," Proceedings MRI Symposium on Computer Soft-
ware Engineering, New York, NY, April 1976, pp. 267-280.

Sharpley, W. K., Jr., "Software Maintenance Planning for Embedded
Computer Systems," Proceedings COMPSAC 1977, Chicago, IL,
November 1977, pp. 520-526.

Sholl, H. A. and Booth, T. L., "Software Performance Modeling
Using Computation Structures," IEEE Transactions on Software
Engineering, Volume SE-I, Number 4, December 1975, pp. 414-
420.

Sperry Univac, Modern Programmin9 Practices Study Report, Final
Technical Report, April 1977, RADC-TR-77-106, A040049.

Stearns, S. K., "Experience with Centralized Maintenance of a
Large Application System," Proceedings COMPCON Spring 1975,
San Francisco, CA, February 1975, pp. 281-284.

Stephens, S. A. and Tripp, L. L., "A Requirements Expression
and Validation Tool," Proceedings Third International Con-
ference on Software Engineering, Atlanta, GA, May 1978,
pp. 101-108.

Stockenberg, J. E. and Van Dam, A., "STRUCT Programming Analysis
System," Proceedings First National Conference on Software
Engineering, Washington, DC, September 1975, pp. 27-36.

Straeter, T. A., et al., "MUST - An Integrated System of Support
Tools for Research Flight Software Engineering," Proceedings
Computers in Aerospace Conference, Los Angeles, CA, November
1977, pp. 442-446.

Strong, E. J., III, "Software Reliability and Maintainability
in Large-Scale Systems," Proceedings COMPSAC 1978, Chicago,
IL, November 1978, pp. 755-760.

7-17

Stucki, L. G. and Foshee, G. L., "New Assertion Concepts for
Self-Metric Software Validation," Proceedings IEEE Conference
on Reliable Software, Los Angeles, CA, April 1975, pp. 59-
65.

Stucki, L. G., et al., Methodology for Producing Reliabile Software,
McDonnell Douglas Astronautics Company, March 1976, NASA
CR 144769, Two Volumes.

Swanson, E. B., "The Dimensions of Maintenance," Proceedings
Second International Conference on Software Reliability,
San Francisco, CA, October 1976, pp. 492-497.

System Development Corporation, An Investigation of Programming
Practices in Selected Air Force Projects, Final Technical
Report, June 1977, RADC-TR-77-182.

Taylor, R. N. and Osterweil, L. J., "A Facility for Verification
Testing and Documentation of Concurrent Software," Proceedings
COMPSAC 1978, Chicago, IL, November 1978, pp. 36-41.

Teichroew, D., "ISDOS and Recent Extensions," Proceedings MRI
Symposium on Computer Software Engineering, New York, NY,
Aril 1976, pp. 75-81.

Teichroew, D. and Hershey, E. A., III, "PSL/PSA: A Computer-
Aided Technique for Structured Documentation and Analysis
of Information Processing Systems," IEEE Transactions on
Software Engineering, Volume SE-3, Number 1, January 1977,
pp. 41-48.

Todoriki, M. and Handa, M., "A Hierarchical Model of Computer
Systems by SIMULA 67," Proceedings Summer Computer Simulation
Conference, Chicago, IL, July 1977, pp. 795-797.

TRW (Catalog), Software Tools, Catalogue and Recommendations,
TRW, Defense and Space Systems Group, January 1979.

TRW Systems and Space Group, NSW Feasibility Study, Final Tech-
nical Report, February 1978, RADC-TR-78-23, A052996.

Uhrig, J. L., "Life Cycle Evaluation of System Partitioning,"
Proceedings COMPSAC 1977, Chicago, IL, November 1977, pp.
2-8.

Van Horn, E. C., "Software Evolution Using the SEER Data Base,"
Proceedings COMPSAC 1978, Chicago, IL, November 1978, pp.
147-152.

Van Vleck, T. H. and Clingen, C. T., "The Multics System Programming
Processes," Proceedings Third International Conference on
Software Engineering, Atlanta, GA, May 1978, pp. 278-280.

7-18

Victor, K. E., "A Software Engineering Environment," Proceed-
ings Computers in Aerospace Conference, Los Angeles, CA,
November 1977, pp. 399-403.

Von Henke, F. W. and Luckham, D. C., "A Methodology for Verify-
ing Programs," Proceedings international Conference on Reli-
able Software, Los Angeles, CA, April 1975, pp. 156-164.

Walters, G. F. and McCall, J. A., "The Development of Metrics
for Software R&M," Proceedings Annual Reliability and Main-
tainability Symposium, Los Angeles, CA, January 1978, pp.
79-85.

Wasserman, A. I., et al., "Software Engineering: The Turning
Point," Computer, Volume 11, Number 9, September 1978, pp.
30-41.

Wegner, P., "Research Directions in Software Technology," Proceedings
Third International Conference on Software Engineering,
Atlanta, GA, May 1978, pp 243-259.

White, B. B., "Planning for Software Quality," Proceedings National
Aerospace Electronics Conference, Dayton, OH, May 1978,
pp. 230-235.

White, B. B., "Program Standards Help Software Maintainability,"
Proceedings Annual Reliability and Maintainability Sympo-
sium, Los Angeles, CA, January 1978, pp. 94-98.

Williams, R. D., "Managing the Development of Reliable Software,"
Proceedings International Conference on Reliable Software,
Los Angeles, CA, April 1975, pp. 3-8.

Witt, J., "The COLOMBUS Approach," IEEE Transactions on Software
Engineering, Volume SE-l, Number 4, December 1975, pp. 358-
363.

Wulfe, W. A., "Reliable Hardware/Software Architecture," IEEE
Transactions on Software Engineering, Volume SE-l, Number
2, June 1975, pp. 233-240.

Yau, S. S., et al., "An Approach to Error-Resistant Software
Design," Proceedings Second International Conference on
Software Engineering, San Francisco, CA, October 1976, pp.
429-436.

Yau, S. S. and Cheung, R. C., "Design of Self-Checking Software,"
Proceedings International Conference on Reliable Software,
Los Angeles, CA, pp. 450-457.

7-19

Yau, S. S. and Collofello, J. S., Performance Considerations
in the Maintenance Phase of Large Scale Software Systems,
Interim Report, June 1979, RADC-TR-79-129, A072380.

Yau, S. S., et al., "Ripple Effect Analysis of Software Mainte-
nance," Proceedings COMPSAC 1978, Chicago, IL, November
1978, pp. 60-65.

Zelkowitz, M. V., "Automatic Program Analysis and Evaluation,"
Proceedings Second International Conference on Software
Engineering, San Francisco, CA, October 1976, pp. 158-163.

Zelkowitz, M. V., "Perspectives on Software Engineering," Com-
puting Surveys, Volume 10, Number 2, June 1978, pp. 197-
216.

Zempolich, B. A., "Effective Software Management Requires Con-
sideration of Many Factors," Defense Management Journal,
Volume 11, Number 4, October 1975, pp. 8-12.

Zinkle, A. L., An Automatic Software Maintenance Tool for Large-
Scale Operating Systems, Final Report, December 1978, AD
A067 799.

7-20

-. -- .

APPENDIX

GLOSSARY

The objective in including this glossary of terms is to

present definitions for the more frequently used terms that are

consistent with common usage. These definitions have been taken

from the comprehensive, software engineering glossary compiled

by the Data and Analysis Center for Software. The terms included

here represent a subset of those found in the DACS glossary.

As stated in the forward to the DACS glossary, the terms and

definitions originated with a variety of sources; software engi-

neering literature, individual usage, and data processing dic-

tionaries. Specific credits for selected term definitions and

the list of definition sources have been ommitted here. Reference

to the DACS glossary is made for this information and for defin-

ition of terms not included in this glossary.

A-1

Algor ithin

A collection of operations organized to be performed in a cer-
tain order when applied to data objects. The arrangement of
the operations may lead to some of the operations being performed
multiple times and others not being performed at all. The se-
lection and ordering of the performance of the operations may
depend in part on the data objects to which the algorithm is
applied. If an algorithm is applied twice to the same data
object, the operations will be performed in the same order
(yielding the same results) . The arrangement of the operations
of an algorithm which determines their selection and order of
performance is indicated by the control structures (and control
statements) used to define the algorithm. An algorithm may
be used to define an operation (on one level of abstraction)
in terms of other operations (on a lower level of abstraction).

A prescribed set of well-defined rules or processes for the
solution of a problem in a finite number of steps. in principle,
the steps are sufficiently basic and definite that a human can
compute according to the prescribed steps exactly and in a finite
length of time, using pencil and paper.

Analytical Modeling

The technique used to express mathematically (usually by a set
of equations) a representation of some real problem. Such models
are valuable for abstracting the essence of the subject of inquiry,
because equations describing complex systems tend to become
complicated and often impossible to formulate, it is usually
necessary to make simplifying assumptions which may distort
accuracy. Specific language and simulation systems may serve
as aids to implementation.

Analyzer

An analyzer is a computer program which is applied to another
program to provide analytical information. An analyzer breaks
the program into identifiable small parts called segments, and
uses the resulting segments to produce statistical information.
This information can include execution frequency statistics,
program path analysis, and/or source code syntax analysis.
An analyzer may be used to determine (1) the degree to which
test cases exercise the structure of the program; (2) which
program segments are not executed; (3) which segments are heavily
executed (and thus are candidates for optimnization); (4) which
test cases need to be rerun if a program segment is changed.

A computer program used to provide source language or execution
frequency statistics at the program or source-statement level
to assist in performance evaluation and determination of test
case coverage.

A- 2

Assertion

An assertion is a loqical expression that specifies an instantaneous

condition or relation among the variables of a program. Asser-

tions are used in various methods of program verification as

well as for program testing, synthesis, and abstraction.

A statement defining properties or behavior at a specific point

in a computer program.

Assignment Statement

An instruction used to express a sequence of operations, or

used to assign operands to specified variables or symbols, or

both.

All statements that change the value of a variable as their

main purpose (e.g. assignment or read statements, but the assign-

ment of the DO loop variable in a Do statement should not be
includeO).

Augmentability

Code possesses the characteristic augmentability to the extent

that it can easily accommodate expansion in component computational

functions or data storage requirements, this is a necessary

characteristic for modifiability.

qatch Processing

The processing of data or the accomplishment of jobs accumulated

in advance in such a manner that each accumulation thus formed

is processed or accomplished in the same run.

Pertaining to the technique of executing a set of computer pro-

grams such that each is completed before the next program of

the set is started.

Usage of a computer where the entire job is read into the machine

before the processing begins. (Interactive usage always is
via a terminal, batch usage may be via a terminal or a card
deck.)

Case

A case statement is a statement that transfers control to one

of several locations depending on the value of the control ex-

pression. ...The "case" construct provides a n-way transfer

of control and is considered a "GOTO" replacement. One type

of case statement is the "arithmetic if" in FORTRAN.

Change

A modification to design, code, or documentation. A change

might be made to correct an error, to improve system performance,

to add a capability, to improve appearance, to implement a re-
quirements change, etc.

A-3

Any alteration (addition, deletion, correction) of the program
code whether it be a single character or thousands of lines
of code. Changes made to improve documentation or satisfy new
specifications are important to record and study, but are not
counted as bugs. --Compare with maintenance or with modification.

Code Analysis

Code analysis is the process of verifying that the computer
program, as coded, is a correct implementation of the specified
design.

Command Language

A source language consisting primarily of procedural operators,
each capable of invoking a function to be executed.

The language through which a user directs a system.

Compiler

A computer program used to compile. Synonomous with compiling
program.

A tool, used in the production of software systems, that allows
programs to be written in higher-order languages, examples include
the PL/I compiler, FORTRAN compiler, and COBOL compiler.

A program which translates a higher-order language source program
into either assembly or machine language.

Computer Program

A computer program is a series of instructions or statements
in a form acceptable to computer equipment designed to cause
the equipment to execute an operation or operations.

An identifiable series of instructions, or statements in a form
suitable for execution by a computer, prepared to achieve a
certain result.

Computer Software

A combination of associated computer programs and data required
to command the computer equipment to perform computational or
control functions.

The terms software and computer software are used interchangeably.

A- 4

Computer System

A computer system is an interacting collection of computer equip-
ment, computer programs, and computer data.

Concurrent Processes

Processes may execute in parallel on multiple processors or
asynchronously on a single processor. Concurrent processes
mnay interact with each other during execution. Individual processes
within a collection of concurrent processes may suspend their
execution pending receipt of information from another of the
processes.

Configuration

The collection of interconnected objects which make up a system
or subsystem.

The total software modules in a software system or hardware
devices in a hardware system and their interrelationships.

Configuration Control

A methodology concerned with procedures for controlling the
contents of a software system. A way of monitoring the status
of system components, preserving the integrity of released and
developing versions of a software system,. and controlling the
effects of changes throughout the system.

A process by which a configuration item is baselined, and there-
after, only changeable by approval by a controlling agency.

Configuration Management

Configuration management involves the systematic and disciplined
application of the principles of good technical and administra-
tive practices to ensure that all requirements are identified,
evaluated, transformed into arid maintained as hardware configur-
ation items and software configuration items. it is the function
of configuration management to provide the framework for tech-
nical control and status accounting during configuration item
acquisition or modification to best direct maintenance effort
and to minimize impact of maintenance and testing on operational
service.

All activities related to controlling the contents of a software
system. It monitors the status of system components, preserves
the integrity of released and developing versions of a system,
and controls the effects of changes throughout the system.
It is a process dealing as much with procedures as with tools.
A discipline applying technical and administrative direction
and surveillance to identify and document a configuration item,
to control changes to it, and to report status of change pro-
cessing and implementation.

A- 5

Control Structures

Control structures a'-e the logical expressionr- that determine
the flow of control Through a computer program. Structured
programming restricts flow of control constructs to simple struc-
tures and avoids transfers of control that create flow complex-
ities (i.e., excessive GOTO statements).

An organization used to build a control segment. A control
structure relates two or more operations or control segments
within an algorithm. A control structure provides the framework
to determine: 1) whether its component operations and control
segments will be performed; and 2) the order in which they will
be performed during execution of an algorithm.

Corrective Maintenance

Maintenance specifically intended to eliminate an existing fault ...
Contrast with preventive maintenance.

Correctness

Agreement between a program's total response and the stated
response in the functional specification (functional correctness),
and,/or between the program as coded and the programming speci-
fication (algorithmic correctness).

Correctness Proofs

Proof that a program produces correct results for all possible
inputs. Validation of a program in the same way a mathematical
theorem is proved correct, i.e., by mathematical analysis of
its properties.
An alternative to executing tests of software to demonstrate
its correctness is the method of analytic proofs. The verifi-
cation process consists of making assertions describing the
state of a program initially, at intermediate points in the
program flow, and at termination, and then proving that each
assertion is implied by the initial or prior assertion and also
by the transformations performed by the program between each
two consecutive assertions. An assertion consists of a definition
of the relationships among the variables at the point in the
program where the assertion is made. The proofs employ standard
techniques for proving theorems in the first order predicate
calculus. Proof of the correctness of a program using this
approach obviates the need for executing test cases, since all
possibilities are covered by the proofs.

A-6

The technique of proving mathematically that a given program
is consistent with a given set of specifications. This process
can be accomplished by manual methods or by program verifiersL
requiring manual intervention.

Automated verification systems exist which ali3w the analyst
to prove small programs are correct by means similar to those
used in proving mathematical theorems. Axioms and theorems
derived are used to establish validity of program assertions
and to provide a fundamental understanding of how the program
operates.

Data Base

(1) A set of data, part or the whole of another set of data,
and consisting of at least one file, that is sufficient for
a given purpose or for a given data processing system. (2) A
collection of data fundamental to a system, (3) A collection
of data fundamental to an enterprise.

Data Repository

A facility for gathering, storing and disseminating data related
to a particular topic or group of topics.

Debugging

Testing is the process of determining whether or not errors./faults
exist in a program. Debugging is an attempt to isolate the
source of the problem and to find a solution... .debugging is
required only in the event that one or more tests fail. It
is the process of locating the error/fault which caused a test
to fail.

The identification and correction of software discrepancies.

Debugging Tools

Those programs designed to locate and eliminate programming
errors and to test a program for proper execution.

Software tools available to the sy'stem operator and used ti
locate errors in software. (The tools may include dump, snap,
inspect and change, and time capabilities.)

Design Analysis
Design analysis ensures that the computer program design is
correct and that it satisfies the defined software requirements
with respect to design completeness and the various design ele-
ments: mathematical equations, algorithms, and control logic.

Design Hierarchy

in software, a program design in which the identified programmable
elements are arranged in order of dependency from the most depen-
dent elements to the least dependent elements.

A-7

Desk Checking ~
Desk checking (DC) is a term covering the totality of verification
efforts performed manually during program checkout without benefit
of a computer or simulator... .most commonly, desk checking refers
to (1) doing arithmetic calculations to verify output value
correctness, and (2) "playing computer" (i.e., manually simulating
program execution) in order to understand and verify program
logic and data flow. Desk checking is an essential part of
any verification process. It usually concentrates on areas
of special problems, especially suspected errors or code ineffi-
ci enci es.

Document at ion

Software documentation is technical data, including computer
li-stings and printouts, in human-readable form which (1) documents
the design or details of the software, (2) explains the capabili-
ties of the software, or (3) provides operating instructions
for using the software to obtain desired results from computer
equipment.

Written material, other than source code statements, that describes t
a system or any of its components.

The production of all the paper work necessary to describe the
Linal product. Examples include: Cross-reference listings,
dictionary listings, and flow charts.

The comprehensive description of a computer program in various
formats and levels of detail to clearly define its content and
composition.

Eff iciency

Code possesses the characteristic efficiency to the extent that
it fulfills its purpose without waste of resources, this implies
that choices of source code constructions are made in order
to produce the minimum number of words of object code, or that
where alternate algorithms are available, those taking the least
time are chosen; or that information-packing densite in core
is high, etc., of course, many of the ways of coding efficiently
are not necessarily efficient in the sense of being cost-effective,
since portability, maintainability, etc., may be degraded as
a result. The process whose end is to increase efficiency is
optimization. Efficiency is the ratio of useful work performed
to the total ene-gy expended. It can also be expressed as the
effectiveness/cost ratio.

Entry

Entry is the instruction at which the execution of a routine
begins,... A "proper program"~ is one having only one entry
and one exit. Additional entries imply increased complexity
both in coupling and in internal functional composition. Multiple
entries are prohibited in structured programming guidelines.

A- 8

Error

An error is a discrepancy which results in software containing
a fault.

An error is an action which results in software containing a
fault. The act of making an error includes omission or misin-
terpretation of user requirements in the software subsystem
specification, incorrect translation or omission of a requirement
in the design specification and programming errors. Also, pro-
gramming errors include: algori'thmic (fails proof of correct-
ness), algorithmic approximation (accurate for some inputs,
inaccurate for others), typographical (e.g., I for l,* for ~
etc.), data structure (e.g., dimensions, linkages incorrect),
semantic (compiler works differently than programmer believes),
SYNTAX (e.g., parentheses omitted), logic (e.g., or for XOR),
interface (I/O mismatch), timing (e.g., execution time of instruc-
tion sequence greater than required).

A discrepancy between a specification and its implementation,
the specification might be requirements, design specifications,
coding specifications, etc.

A discrepancy between a computed, observed, or measured value
or condition and the true, specified, or theoretically correct
value or condition.

Extensibility

The extent to which software allows new capabilities to be added
and existing capabilities to be easily tailored to user needs.

Fault Tolerance

Use of protective redundancy. A system can be designed to be
fault-tolerant by incorporating additional components and abnor-
mal algorithins which attempt to insure that occurrences of erron-
eous states do not result in later system failures-a quanti-
tative prediction of system reliability.

Fault-Tolerant Software

A software structure employing functionally redundant routines
with concurrent error detection, and provisions to switch from
one routine to a functional alternate in the 2vent of a detected
fault.

Flow of Control

Flow of control is the ordered sequence of operations performed
in the execution of a series of algorithms... .the control structures
of a high-level programming language (FORTRAN, COBOL, PL/i,I
etc.) allow sequential processing and branching. Examples of
flow-of-control statements in a high-level programming language
are: GOTO, case, while, if-then-else, etc.J

A- 94

i&

Foreign Debug

Foreign debugging (FD) is an in-depth program review conducted
by someone other than the implementor to find program errors
and improve program reliability... .A non-implementor learns the
internal characteristics of the program to be debugged, con-
structs appropriate test cases, and debugs just as the imple-
mentor would.

Function

(1) A mathematical notation used to specify the set of inputs,
the set of outputs, and the relationship between the inputs
and outputs.

(2) A function is a subprogram which returns a particular value
that is dependent upon the independent value(s) given with the
calling instruction. .. .Normally the value returned by a func-
tion is directly associated with the name of the function such
as sin(k).

(3) A grouping of routines which performs a prescribed function.

(4) A sub-division of processes.

(5) In computer programming, synonym for procedure.

ship between circumstances and responses.

(7) The natural, required, or expected activity of a program
element in carrying out a program requirement.

Functional Testing

(1) The execution of independent tests designed to demonstrateF
a specific functional capability of a program or a software
system.

(2) Validation of program "functional correctness" by execution
under controlled input stimuli. This testing also gauges the
sensitivity of the program to variations of the input parameters.

GOTO

In a high-level programming language (FORTRAN, COBOL, PL/l,
etc.) GOTO is a statement which tells the computer where the
sequence of execution should continue ... A GOTO statement normally
transfers control of the sequence of instructions to some other
point in the program. The GOTO statement became a debating
point when Dijkstra said in 1965 that the quality of a programmer
was inversely proportional to the number of GOTO statements
in his programs. others argued for the retention of the GOTO
statement because of its usefulness in a limited number of situ-
ations... .also see -flow of control.

A- 10

Inductive Assertion

An invariant predicate appearing within a procedure iteration.
Usually placed just following the loop-collecting node. These
predicates are used as an aid toward proving correctness.

Input Assertion

An input assertion is an assertion (usually denoted by the Greek
letter phi) that imposes conditions on the input to a program.
It is used to specify the domain of input values over which
a program is intended to operate. A program is said to be totally
correct with respect to an input assertion phi, if it yields
the desired output for all sets of input values satisfying
ph i.

Int e grat ion

The combination of subunits into an overall unit or system by
means of interfacing in order to provide an envisioned data
processing capability.

Integration Test

Integration test - test of several modules in order to check
that the interfaces are defined correctly.

Full integration test - testing of the entire system (i.e., top
level component).

Partial integration test - test of any set of modules but not
the entire system.

Interactive

Usage of a computer via a terminal where each line of input
is immediately processed by the computer.

Interactive Debug

Interactive debugging (ID) is the process of seeking and cor-
recting errors in a computer program while communicating with
the computer executing the program... .typically, the communication
takes the form of monitoring program progress, inspecting inter-
mediate values, inserting data corrections as needed, and, in
general, controlling program execution. ID can dramatically
reduce the time needed to debug a program since the programmer
can accomplish in a short session with the "computer" (often,
a remote terminal attached to the computer) what would normally
take several batch turnarounds (e.g., in many installations,
several days).

A-11

Inter face

(1) A shared boundary. An interface might be a hardware com-
ponent to link two devices or it might be a portion of storage
or registers accessed by two or more computer programs.

(2) Interface - The set of data passed between two or more
programs or segments of programs, and the assumptions made by
each program about how the other(s) operate.

(3) The common boundary between software modules between hard-
ware devices, or between hardware and software.

(4) When applied to a module, that set of assumptions made
concerning the module by the remaining program or system in
which it appears. Modules have control, data, and services
interfaces.

Invariant

An invariant is an assertion associated with a point in a program
that is satisfied whenever execution reaches that point ...
An invariant that cuts a loop in the program is sometimes called
a "loop invariant." Such an assertion is said to "carry" itself
around the loop... .also see - assertion.

Link Editor

A utility routine that creates a loadable computer program by
combining independently translated computer program modules
and by resolving cross references among the modules.

Loader

A routine, commonly a computer program, that reads data into
main storage.

A computer program that enables external references of symbols
among different assemblies as well as the assignment of abso-
lute addresses to relocatable strings of code. This program
provides diagnostics on assembly overlap, unsatisfied external
references, and multiple defined external symbols.

A program which produces absolute machine code from a relocatable
code object program.

Loop

(ISO) A set of instructions that may be executed repeatedly
while a certain condition prevails. In some implementations,
no test is made to discover whether the condition prevails until
the loop has been executed once.

Macro

A macro is a single instruction in a source language that is
replaced by a defined sequence of source instructions in the

A- 12

same language. The macro may also specify values for parameters
in the instructions that are to replace it. Default values
may exist for the parameters.

A test replacement mechanism whereby a predefined sequence of
assembly language statements are inserted wherever prescribed
during the translation process.

Maintainability

Code possesses the characteristic maintainability to the extent
that it facilitates updating to satisfy new requirements or
to correct deficiencies. This implies that the code is under-
standable, testable and modifiable; e.g., comments are used to
locate subroutine calls and entry points visual search for loca-
tions of branching statements and their targets is facilitated
by special formats, or the program is designed to fit into available
resources with plenty of margins to avoid major redesign, etc.

Maintainability is the probability that, when maintenance action
is initiated under stated conditions, a failed system will be
restored to operable condition within a specified time.

Maintainability Measurement

The probability that when maintenance action is initiated under
stated conditions, a failed system will be restored to operable
condition within a specified time.

Maintainable

A software product is maintainable to the extent that it can
be changed to satisfy new requirements or to correct deficiencies ...
Some of the characteristics which indicate the extent to which
a software product is maintainable are: (A) Ease of modifying
its documentation; e.g., insertions and deletions can be made
without renumbering other pages, and revision records are avail-
able. (B) Code modifications are traceable to any previous
state (e.g., source code lines sequentially numbered, and comment
marks used to convert previously executable source code state-
ments to "comments" which remain in the listing as a change
record). (C) Documentation includes cross-references of vari-
able names with subroutines in which they are used, and subrou-
tines calling sequences. (D) Comments are used to locate sub-
routine calls and entry points. (E) Source code format facili-
tates visual search for locations of branching statement and
their targets. Alternatively, up-to-date flowcharts are available.

Maintenance

(1) Any activity, such as tests, measurements, replacements,
adjustments, and repairs, intended to eliminate faults or to
keep a functional unit in a specified state.

(2) Activity which includes the detection and correction of
errors and the incorporation of modifications to add capabilities

A-13

and/or improve performance. See also preventive mainte-
nance, corrective maintenance.

(3) Software maintenance - the process of modifying existing
operational software while leaving its primary function intact.

(4) Alterations to software during the post-delivery period
in the form of sustaining engineering or modifications not re-
quiring a reinitiation of the software development cycle.

modifiability

Code possesses the characteristic modifiability to the extent
that it facilitates the incorporation of changes, once the nature
of the desired change has been determined. Note the higher
level of abstractness of this characteristic as compared with
augmentability.

Modifiability implies controlled change, in which some parts
or aspects remain the same while others are altered, all in
such a way that a desired new result is obtained.

Modifiable

Modifiability is the characteristic of being easy to modify ...
modifiability or to be modifiable implies controlled change
in which some parts or aspects remain the same, while others
are altered; all in such a way that a desired new result is
obtained. Modifiability is one aspect of maintainable. Also
see - maintainable.

Modification

The process of altering a program and its specifications so
as to perform either a new task or a different but similar task.
In all cases, the functional scope of a proqram under modifi-
cation changes.

Module

A program unit that is discrete and identifiable with respect
to compiling, combining with other units and loading.

A program; (A) Characterizable externally as performing a single
operation; and (B) Characterizable internally as limited in
complexity. The complexity of a module may be measured in terms
of: I) The depth of nesting of its control structures; II)
The total number of its control segments (i.e. control struc-
tures); and III) The total number of its operations.
A portion of a computer program which performs identifiable
functions in a somewhat autonomous manner, and which is usually
constrained to some maximum size.P

Modules are characterized by lexical binding, identifiable proper
boundaries, named access, and named reference. The word "module"

may apply to a subprogram, subroutine, routine, program, macro,

A- 14

or function. A "compile module" is a module or set of modules
that are discrete and identifiable with respect to compiling,
combining with other units, and loading.

Module Testing

The intent of the module or unit test is to find discrepancies
between the module's logic and interfaces, and its module exter-
nal specifications. (The description of the module's function,
inputs, outputs, and external effects). The step of compiling
the module should also be considered as part of the module test
since the compiler detects most syntax errors and a few semantic
or logic errors.

Mutation

A technique for creating high quality test data. The approach
is based on the competent programmer assumption; that after
the programmer has completed his job, the program is either
correct or "almost" correct in that it differs from a correct
program in only simple ways, and is thus a mutant of a correct
pr-ogram. The central idea of program mutation is the construc-
tion of a set of mutants of the target program. A mutant is
a copy of the target program which differs only by a single
"mutation". A mutation is a transformation of a program state-
ment in a way which stimulates typical program errors. Some
mutants may turn out to be equivalent, functionally, to the
target program. The remainder should be distinguished from
the target program by sufficiently powerful test data. Test
data which is able to distinguish all non-equivalent mutants
of a target program must thoroughly exercise the program and,
hence, provide strong evidence of the program's correctness.

Operational

The status given a software package once it has completed con-
tractor testing and it is turned over to the eventual user for
use in the applications environment.

Output Assertion

An output assertion, usually denoted by the greek letter psi,
is a statement that expresses a relation between the input and
output values of a program. An output assertion is used in
conjunction with an input assertion to specify formally the
intended function of a program. A program is said to be totally
correct with respect to an input assertion phi and output asser-
tion psi if it halts satisfying psi on all inputs.

Path Analysis

A software technique which scans source code in order to design
an optimal set of test cases to exercise the primary paths in
a software module.

A- 15

A technique which defines a practical measurable means of deter-
mining an optimal number of test cases by examining source code
and determining the minimum set of paths which exercise all
logical branches of a program.

Path Condition

The compound condition which must be satisfied by the input
data point in order that the control path be executed. It is
the conjunction of the individual predicate conditions which
are generated at each branch point along the control path.
Not all the control paths that exist syntactically within the
program are executable. If input data exist which satisfy the
path condition, the control path is also an execution path
and can be used in testing the program. If the path condition
is not satisfied by any input value, the path is said to be
infeasible, and is of no interest in testing the program.

Per formance

The evaluation of non logical properties (i.e. computer run
time, resource utilization) of a software system. Performance
is measured in terms of the amount of resources required by
a software system to produce a result.

A measure of the capacity of an individual or team to build
software capabilities in specialized or generalized contexts.
Performance distinguishes between work and effort, as it includes
productivity as one component of its measure. However, per-
formance also measures quality of work as measured by other
criteria as well, as set forth in a prioritized list of "com-
peting characteristics" early in development.

Performance Evaluation

The degree to which a system meets stipulated or generally iccepted
goals.

Portability

Portability is the property of a system which permits it to
be mapped from one environment to a different environment.

"Portability" designates the fact that for many different machines
and operating systems, copies of the product can be delivered
with unitorm operating characteristics. From the user's point
of view, any input which is valid on one supported system is
valid on any other supported system, and will produce identical1

Code possesses the characteristic portability to the extent
that it can be operated easily and well on computer configur-
ations other than its current one.. This implies that special
language features, not easily available at other facilities
are not used; or that standard library functions and subrou-
tines are selected for universal applicability, etc.

A-16

Pnrtaihility is the property of a system which allows it to be
moved to the new environment with relative ease.

Pred icate

A logical proposition or assertion concerning the state of a
program at a given point, having either a true or false value.
(7oncerning program correctness, all such assertions must be
axioms or be proved true.

Preventive Maintenance

Maintenance specifically intended to prevent faults from occurring.
Corrective maintenance and preventive maintenance are both per-
formed during maintenance time. Contrast with corrective main-
tenance.

Production

That portion of a software implementation that has to do with
The generation of code and documentation and the checkout for
correctness by production personnel. Production programming
is characterized by the application of tradeoffs, known algo-
rithms, and state-of-the-art solution methods toward software
generation, a-' opposed to programming performed to extend the
current state of the art.

Production Libraries

A technique used to provide constantly up-to-date representations
of the computer programs and test data in both computer and
human readable forms. The current status and past history of
all code generated is also maintained. Specific library pro-
grams are available to serve as aids to implementation.

Production Run

The operation of a software system under real operating condi-
tions and the production of useful products for the customer.
This is contrasted with a test run, which is the operation of
a software system to test its performance.

Program Module

A program module is a discrete, identifiable set of instructions
asually handled as a unit by an assemblier, a compiler, a link-
age editor, a loading routine, or other type of routine or
"subroutine."

Program Segment

The smallest coded unit of a program which can be loaded as
one logical entity.

A combination of program steps and calls to lower-level program
segments.

A- 17

Program Transformations

To replace one spgment of a program description by another,
equivalent description.

Programmer

A programmer is a person who produces computer programs. A
senior level programmer is normally capable of performing all
software development activities including design, code, test,
and documentation. The activities of a more junior level program-
mer may be limited to coding, test case preparation, and/or
assisting in the modification of existing programs and documentation.

Proof of Correctness

A proof of correctness is a statement of assertions about a
program that is verified by analytic methods... An alternative
to executing tests on software to demonstrate its correctness
is the method of analytic proofs. The verification process
consists of making assertions describing the state of a pro-
gram, initially, at intermediate points in the program flow
and at termination; and then proving that each assertion is
implied by the initial or prior one and by the transformations
performed by the program between each two consecutive asser-
tions. An assertion consists of a definition of the relation-
ships among the variables at that point in the program where
the assertion is made. The proofs employ standard techniques
for proving theorems in the first-order predicate calculus.
Proof of the correctness of a program using this approach lessens
the need for executing test cases, since all possibilities 3re
covered by the proofs.

Quali t y

The degree to which software conforms to quality criteria.
Quality criteria include, but are not limited to, correctness,
reliability, validity, resilience, useability, clarity, main-
tainability, modifiability, generality, portability, test-
ability, efficiency, economy, integrity, documentation, under-
standability, flexibility, interoperability, modularity, reup-
ability.

Quality Assurance
planned and systematic pattern of all action necessary toj

provide adequate confidence that the item or product conforms
to established technical requirements.

The process of activity during which the system design is audited
to determine whether or not it represents a verifiable and cer-
tifiable specification, and during which test plans and test
procedures are formulated and implemented. This activity ensures
the technical compliance of the software system--a product--
to its requirements and design specifications. Quality assurance

A-18

is an independent audit review of all products to ensure their
compliance to a management-directed standard of quality.

Guarantee made by the developer to the customer that the software
meets minimum levels of acceptability. The criteria for accept-
ability should be mutually agreed upon, measurable, and put
into writing. Primarily, although not necessarily, quality
is assured through some form of testing.

Regression Testing

Regression testing (RT) is a method for detecting errors spawned
by changes or corrections made during software development and
maintenance. A set of tests which the program has executed
correctly is rerun after each set of changes is completed, if
no errors occur, confidence is increased that spawned errors
were not created in that change... RT is an invaluable aid
during program maintenance to prevent the "X step forw.ard, Y
steps backward" syndrome. Spawned errors are particularly oner-
ous from a program user point of view, since they contribute
to user distrust ("it used to work; why doesn't it now). RT
is primarily used in a maintenance-intensive environment. How-
ever, it has applicability to any program in maintenance, regard-
less of the quantity of frequency of change ... A set of tests
is maintained and utilized prior to release of each new soft-
ware version. If errors or deviations are detected, they are
corrected and the regression test is repeated prior to release.
If acceptance tests are used, they should form the basis for
the regression tests. Tests should be added as new sott spots
are identified during maintenance. Because of the frequency
of rerunning, tests should be self checking whenever possible.
Also see - testing.

Repairable

A software product is repairable to the extent that a change
to correct a deficiency can be localized, so as to have minimal
influence on other program modules, logic paths, or documentation.
Repairability is a subcategory of maintainability, but the impli-
cation is that a software product becomes non-repairable when
the effects of a proposed code fix are not understood with suffi-
cient confidence, owing to previous poor maintenance practices,
including lack of traceability. In other words, a state of
non-repairability is reached when it can be concluded that it
is cost effective to redesign a significant portion of the pro-
gram. Also see maintainable.

Scenario

An automated test control package consisting of test execution
control words, test data, and even stimuli used to activate
and test a target program.

A- 19

Software

Software is computer program code and its associated data, docu-
mentation, and operational procedures.

Software Engineering

Software engineering combines the use of mathematics to analyze
and certify algorithms, engineering to estimate costs and define
tradeoffs, and management science to define requirements, assess
risks, oversee personnel, and monitor progress in the design,
development and use of software. Software engineering techniques
are directed to reducing high software cost and complexity while
increasing reliability and modifiability.

Software engineering is that branch of science and technology
which deals with the design, development, and use of software.
Software engineering is a discipline directed at the production
of computer programs that are correct, efficient, flexible,
maintainable, and understandable in reasonable time spans at
acceptable costs.P

The practical and methodical application of science and technol-
ogy in the design, development, evaluation, and maintenance
of computer software over its life cycle.

Software Life Cycle

The software life cycle is that period of time in which the
software is conceived, developed, and used.

The life cycle is normally divided int-o the six phases of con-
ception, requirements definition, design, implementation, test,
and operational phases. The conceptual phase encompasses pro-
blem statement definition, preliminary systems analysis, and
the identification of alternative solution categories. The
requirements definition phase consists of producing a state-F;
ment of project objectives, system functional specifications,
and design constraints. During the design phase the software
component definitions, interface, and data definitions are gen-
erated and verified against the requirements. The implementation
phase consists of the actual program code generation, unit testing
of the programs, and documenting the system. During the test
phase, system integration of the software components and system
acceptance tests are performed against the requirements. The
operational phase involves the use and maintenance of the system.

This includes the detection and correction of errors and the
incorporation of modifications to add capabilities and/or im-
prove performance.

Software Sneak Analysis

A formal technique involving the use of mathematical graph theory,
electrical sneak theory, and computerized search algorithms
which are applied to a software package to identify softWare

A-20

sneaks. A software sneak is defined as a logic control path
whiCh Causes an unwanted operation to occur or which bypasses
a desired operation without regard to failure of the hard-r
ware system to respond as programmed.

Software Testing

TPhe process of exercising software in an attempt to detect errors
which exist in the code. Software testing does not prove that
a program i : correct.

Standards

Any specifications that refer to the method of development of
the source program itself, and not to the problem to be imple-
mented (e.g., using structured code, at most 100 line subroutines,
all names prefixed with subsystem name, etc.).

Procedures, rules, and conventions used for prescribing disciplined
jrogram design (program structuring, and data structuring) and
implementation. Architecture and partitioning rules, documenta-
tion conventions, configuration and data management procedures,
etc. are among those standards to be disseminated.

A design criterion. An entity conforms to a standard if the
attribute(si defined by the standard apply to the entity.

Conventions, ground rules, guidelines, procedures, and software
tools employed during the software development pocess to benefit
software design quality, coding quality, software reliability,
viability and maintainability.

Stepwise Refinement

Step-wise refinement is the process whereby steps are taken
in the following order: (1) the total concept is formulated,
(2) the functional specification is designed, (3) the functional
specification is refined at each intermediate step where the
intermediate steps include code or processes required by the
previou3, step, and (4) final refinements are made to completely
define the problem.

The process of defining data in more and more detail as the
need arises during the programming process.

The defining of more general operations in terms of more specific,
lower level operations. The design of a programming system
through stepwise refinement is called top down design.

Su bmod ul1e

A module appearing within a module or invoked by a module on
a flowchart, the procedure appearing within or referred to (e.g.,
invoked by) any charted symbol.

A-21

Support Software

All programs used in the development and maintenance of the
delivered operational programs and test/maintenance programs.
Support programs include, but are not limited to: A) Compilers,
assembliers, emulations, builders, and loader.3 required to gener-
ate machine code 3nd to combine subprograms or components into
a complete computer program. B) Debugging programs. C) Stimula-
tion and simulation programs used in operator training sites.
D) Data abstraction and reduction programs applicable to oper-
ational programs. E) Test programs used in development of oper-
ational programs. F) Programs used for management control,
configuration management of document generation and control
during development.

A computer program which facilitates the design, development,
testing, analysis, evaluation, or operation of other computer
programs.

Software tools used by project personnel for software design,
debugging, testing, verification, and management.

SYNTAX

The part of a grammar dealing with the way in which items in
a language are arranged.

The set of rules that defines the valid input strings (sentential
forms) of a computer language as accepted by its compiler (or
assembler). Therefore, the structure of expressions in a lan-
guage, or the rules governing the structure of a language.

Test

Any program or procedure that is designed to obtain, verify,
or provide data for the evaluation, research and development
(other than laboratory experiments) , progress in accomplishing
development objectives; or performance and operational capa-
bility of systems, subsystems, components, and equipments items.

Test Procedure

A formal document developed from a test plan that presents de-
tailed instructions for the set up, operation, and evaluation
results for aach defined test.

Testing

Testing is the part of the so-tware development process where

that the program meets its indended design. It is the process

of feeding sample input data into a program, executing it, and
inspecting the output and/or behavior for correctness. The
cornerstone of reliability methodology is teesi-ing. Traditionally,
testing is the development phase where the largest quantity
of errors is detected and corrected. But, given this expendi-
ture, the software developer has no real assurance of developing

A- 22

error-free software, for the testing cycle only demonstrates
the presence of error. The following technique.- or tools are
considered part of the testing cycle: analyzers, assertions,
source language debug, intentional failure, test drivers, reqres-
sion testing, environment simulators, standardized testinq,
symbolic execution, interactive debug, foreiqn debug, sneak
circuit analysis.

Exercisi-iq different modes of computer program operation throuqh
different combinations of input data (test cases) to find erros.

Tree

An acyclic connected graph. If the tree has N - OR = Nodes,
then it also has N - 1 edges. Every pair of nodes is connected
by exactly one path. The tree often represents a heirarchy,
in which edges are directed to denote a subordinating relation-
ship between the two joined nodes.

Understandable

A software product is understandable to the extent that its
purpose is clear to the inspector.. .Many techniques have been
proposed to increase understandability. Prominent among these
are code structuredness which simplifies logical flow. Local
commentary, to explain complex coded instructions, and consis-
tently used mnemonics. In addition, references to readily avail-
able and up-to-date documents need to be included in source
commentary so that the inspector may comprehend more esoteric
contents. Input, outputs, and assumptions should he stated
in the form of glossaries or prose commentary. In general,
a coding standard encompassing format of headers and indentation
should be followed for all modules so that information can be
found where expected...

Unit

(1) A set of computer program statements treated logically
as a whole. The word "unit" is restricted in the context of
a computer program structure. This usage does nrt refer to
a device unit, or logical unit.

(2) A named subdivision of a program which is capable of being
stored in a program support library and manipula)ted as i single
entity. See also: Program segment.

User

(1) rhe individual at the man/machine interface who is applying
the software to the solution of a problem, e.g. test or opet-
at ions.

(2) Any entity uinq the facilities of an operating system.
In addition to "normal" users, this includes at least programs,
networks, and operators.

A-23

Val idac ion

The process of determining whether executing the system (i.e.,
software, hardware, user procedures, personnel) in a user en-
vironment causes any operational difficulties. The process
includes ensuring that specific program functions meet their
requirements and specifications. Validation also includes the
prevention, detection, diagnosis, recovery, and correction of
errors.

Validation is more difficult than the verification process since
it involves questions of the completeness of the specification
and environment information. There are both manual and computer
based validation techniques.

The process of ensuring that specific program functions meet
their detailed design requirement specifications.

Verification

Computer program verification is the iterative process of deter-
mining whether or not Lhe product of each step of the computer
program acquisition process fulfills all requirements levied

by the previous step. These steps are system specificationI
verification, requirements verification, specification veri-
fication, and code verification.

The process of determining whether the results of executing
the software product in a test environment agree with the speci-
fications. Verification is usually only concerned with the
software's logical correctness (i.e., satisfying the functional
requirements) and may be a ma-iual or a computer based process
(i.e., testing software by executing it on a computer).

The process of ensuring that the system and its structure meet
the functional requirements of the baseline specification
document.

A-114

MISSION
* Of

Rome Air Development\'enter
RAVC jotan6 and execute4 %ezeaLch, devetopnen-t, test and
s eter-ted acqui4 tion ptogaawm in 4uppo'tt oj Command, ContAot

* Commun.Zcation6 and InteZigence (C31) activitie6. Technceat
and enginee~ing 4ucppott w,thin o~ea6 o 6 techn&cat competence
14 P.tovided to ESV Pkog~oam O66ieA (P06) and othiet ESV
etement6. The pti.nciZra technZcal miA.sion aitea ate
commncation6, etecttomagnetic guidance and Eont~ot, awt-
veitta&nce o6 ga'ound and ae'to~pace objecst6, ThnteUigence data
cottection and handting, in6oermo.tion syAtem technotogy,
Zono~phetcic p4opagoation, sotid state scZenceh6, ric/touxzve
phy4 ic and etect'wnic 4etizbiLtq, mantanabitity and
compat>bi~2ty.

